The developmental signals that regulate the switch from genome-wide DNA replication to site-specific amplification remain largely unknown. Drosophila melanogaster epithelial follicle cells, which begin synchronized chorion gene amplification after three rounds of endocycle, provide an excellent model for study of the endocycle/gene amplification (E/A) switch. Here, we report that down-regulation of Notch signaling and activation of ecdysone receptor (EcR) are required for the E/A switch in these cells. Extended Notch activity suppresses EcR activation and prevents exit from the endocycle. Tramtrack (Ttk), a zinc-finger protein essential for the switch, is regulated negatively by Notch and positively by EcR. Ttk overexpression stops endoreplication prematurely and alleviates the endocycle exit defect caused by extended Notch activity or removal of EcR function. Our results reveal a developmental pathway that includes down-regulation of Notch, activation of the EcR, up-regulation of Ttk to execute the E/A switch, and, for the first time, the genetic interaction between Notch and ecdysone signaling in regulation of cell cycle programs and differentiation.
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.
SUMMARYDevelopment in multicellular organisms includes both small incremental changes and major switches of cell differentiation and proliferation status. During Drosophila oogenesis, the follicular epithelial cells undergo two major developmental switches that cause global changes in the cell-cycle program. One, the switch from the endoreplication cycle to a gene-amplification phase, during which special genomic regions undergo repeated site-specific replication, is attributed to Notch downregulation, ecdysone signaling activation and upregulation of the zinc-finger protein Tramtrack69 (Ttk69). Here, we report that the microRNA miR-7 exerts an additional layer of regulation in this developmental switch by regulating Ttk69 transcripts. miR-7 recognizes the 3′ UTR of ttk69 transcripts and regulates Ttk69 expression in a dose-dependent manner. Overexpression of miR-7 effectively blocks the switch from the endocycle to gene amplification through its regulation of ttk69. miR-7 and Ttk69 also coordinate other cell differentiation events, such as vitelline membrane protein expression, that lead to the formation of the mature egg. Our studies reveal the important role miR-7 plays in developmental decision-making in association with signal-transduction pathways.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.