miRNAs have been reported to be stably detectable in plasma and to function as potent biomarkers in multiple cancers. The study aimed to evaluate the expression of candidate circulating miRNAs in patients with small cell lung cancer (SCLC) to identify potential noninvasive biomarkers. The expression of five miRNAs (miR-92b, miR-146a, miR-375, miR-1224, and miR-1246) was significantly upregulated in plasma after chemoresistance induction. Receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) values of miR-92b and miR-375 were 0.766 and 0.791, respectively. The data demonstrated that among the five miRNAs assessed, these two miRNAs had better diagnostic accuracy for monitoring drug resistance. In addition, miR-92b and miR-375 levels were decreased after effective chemotherapy. Furthermore, Kaplan–Meier survival analysis confirmed that high expression of miR-92b and miR-375 was closely related to shorter progression-free survival (PFS) in SCLC patients. In conclusion, these findings indicate that circulating miR-92b and miR-375 might be ideal noninvasive biomarkers for monitoring drug resistance during chemotherapy and evaluating the prognosis of patients with SCLC.
Background Small cell lung cancer (SCLC) is an aggressive and recalcitrant cancer. In recent years, studies focused on the abnormal expression of microRNA which has proven valuable in terms of prognosis, diagnosis and treatment in SCLC. To address the limitations of independent studies data, a meta-analysis seems necessary for further exploration of microRNA as biological target and regulatory factor in SCLC. Methods We performed comprehensive literature retrieval in GEO database and EBI ArrayExpress database. The microRNA expression data was extracted from 4 related researches (GSE15008, GSE74190, GSE19945, GSE77380), which was obtained from GEO database. In each included study, the R. Affymetrix Expression Console’s Limma package and RMA algorithms were used to screen for raw data for gene chip quality control, standardization, log2 conversion and differential expression of the gene chip, respectively. Significant microRNA meta-signatures were identified by Robust Rank Aggregation method. Subsequently, gene ontology (GO) enrichment analysis and pathway analysis were performed using bioinformatics tools. Results We found a significant microRNA meta-signature of six up-regulated (hsa-miR-182-5p, hsa-miR-96-5p, hsa-miR-7-5p, hsa-miR-301b-3p, hsa-miR-130b-3p, hsa-miR-210-3p) and four down-regulated (hsa-miR-126-3p, hsa-miR-451a, hsa-miR-145-5p, hsa-miR-486-5p) microRNA s in meta-analysis approaches. GO analysis showed that target gene of meta-signatures microRNA was mainly enriched in endosome, chordate embryonic development and transforming growth factor beta receptor. The related functional gene of microRNA meta signature synergistically targeting SCLC signaling pathway was confirmed by enrichment analysis. In particular, neurotrophin and TGF-beta signaling pathway play the most important roles in the pathway network. Conclusions Our study identified 10 highly significant and consistently dysregulated microRNA s from 4 datasets, which offering convincing molecular targets and regulatory factors in future research of SCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.