Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm2.
Zinc oxide (ZnO) thin films were coated onto Indium Tin Oxide (ITO) glass substrate using spin coating technique as a function of annealing temperature. The thin film preparation was undertaken by utilising zinc acetate dihydrate, ethanol and diethanolamine as the precursors. The films were coated at room temperature prior to being annealed at temperatures ranging from 300 °C to 450 °C. The resulting crystalline structure and surface morphology of the thin films were then examined using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). UV-visible spectrophotometer was also used to record the optical absorbance in wavelengths ranging from 200 to 800 nm. The findings revealed that the ZnO thin films showed a single phase of wurtzite with n-type semiconductor, with the lowest value of band gap energy of 3.28 eV for ZnO thin films annealed at 350 °C. FESEM results showed that the ZnO nanoparticles were very compact on the surface, whereby the average particle size was equivalent to 108.5, 115.3, 108.2 and 107.8 nm at the temperatures 300 °C, 350 °C, 400 °C, and 450 °C, respectively. Additionally, the highest photoconversion efficiency (0.11%) recorded for the sample was annealed at 350◦C. Thus, annealing temperature was found to significantly affect the optical and electrical properties of ZnO nanoparticle seed layer, as well as its band gap energy and surface morphology.
Following successful growth of zinc oxide (ZnO) nanorods, a layer of zinc selenide (ZnSe) was electrodeposited onto the nanorods to further enhance its conversion efficiency in the photoelectrochemical (PEC) cell. The electrodeposited ZnSe layer onto the ZnO nanorods was subjected to heat treatment at 200, 250 and 300°C. The prepared films were characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis) to investigate the structural, morphological and compositional characteristics. Additionally, PEC conversion generated by the prepared thin films were tested with photocurrent measurements under calibrated visible illumination from a halogen lamp. Based on FESEM analysis, the thickness of ZnO thin film increased with temperature. However, the diameters of the ZnO nanorods were found to be in a decreasing trend upon heat treatment at higher temperature. The electrodeposited ZnSe layer at the potential of -0.7 V for 60 seconds (calcined at 200°C) possessed crystallite size of 20.1 nm. According to UV-Vis analysis, band gap energy measured was 2.8 eV, which is very close to standard ZnSe band gap value (2.7 eV). Additional layer of ZnSe electrodeposited enhanced thin film performance in terms of current density as much as 37.4% while having high photocurrent density of 0.2671 mAcm-2.
Zinc oxide (ZnO) nanorods is widely investigated due to its high photoelectrochemical conversion performance. Further enhancement may be afforded by introducing a metal chalcogenide sensitization layer such as zinc selenide (ZnSe). In this study, ZnO nanorods were electrodeposited with ZnSe at potential range from -0.5 V to -0.9 V vs Ag/AgCl reference electrode. Structural, morphological and optical properties of ZnSe electrodeposited were investigated as a function applied potential by using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). ZnSe electrodeposited for 15 minutes at -0.7 V showed crystallite size of 20.13 nm with the lowest band gap energy of 2.97 eV. The existence of ZnSe particles with the size of 41.8 nm were proven by FESEM images, after ZnSe particles were electrodeposited onto ZnO nanorods that have an average diameter of 62.6 nm and length of 1.6 µm. The photocurrent density generated by samples were measured in a three-electrodes cell incorporated with halogen lamp. The photocurrent generated increased between -0.5 V to -0.7 V before dropped at higher applied potential due to hydrogen evolution process which affected the thin film quality, ultimately affecting photoconversion performance. The highest photocurrent density of 0.2621 mAcm-2 was recorded for samples prepared at -0.7 V vs Ag/AgCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.