Backgroundα-Mangostin (α-MG) is a main constituent of the fruit hull of the mangosteen. Previous studies have shown that α-MG has pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiallergic, antibacterial, antifungal and antiviral effects. This study aims to investigate the anti-inflammatory molecular action of α-MG on gene expression profiles.MethodsU937 and EL4 cells were treated with different concentrations of α-MG in the presence of 0.1 ng/mL lipopolysaccharide (LPS) for 4 h. The anti-inflammatory effects of α-MG were measured by the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-4 in cell culture media, which were determined with enzyme-linked immunosorbent assay kits. The gene expression profiles of all samples were analyzed with a whole human genome microarray, Illumina BeadChip WG-6 version 3, containing 48804 probes. The protein levels were determined by Western blotting analyses.Resultsα-MG decreased the LPS induction of the inflammatory cytokines TNF-α (P = 0.038) and IL-4 (P = 0.04). α-MG decreased the gene expressions in oncostatin M signaling via mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinases (P = 0.016), c-Jun N-terminal kinase (P = 0.01) , and p38 (P = 0.008). α-MG treatment of U937 cells reduced the phosphorylation of MAPK kinase 3 / MAPK kinase 6 (P = 0.0441), MAPK-activated protein kinase-2 (P = 0.0453), signal transducers and activators of transcription-1 (STAT1) (P = 0.0012), c-Fos (P = 0.04), c-Jun (P = 0.019) and Ets-like molecule 1 (Elk-1) (P = 0.038).ConclusionThis study demonstrates that α-MG attenuates LPS-mediated activation of MAPK, STAT1, c-Fos, c-Jun and EIK-1, inhibiting TNF-α and IL-4 production in U937 cells.
Embryonic stem (ES) cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs) by a two-step differentiation protocol comprising of (i) the formation of definitive endoderm in monolayer culture by activin A, and (ii) this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.