While general mechanisms by which Plasmodium ookinetes invade the mosquito midgut have been studied, details remain to be understood regarding the interface of the ookinete, specifically its barriers to invasion, such as the proteolytic milieu, the chitin-containing, protein cross-linked peritrophic matrix, and the midgut epithelium. Here we review knowledge of Plasmodium chitinases and the mechanisms by which they mediate the ookinete crossing the peritrophic matrix. The integration of new genomic insights into previous findings advances our understanding of Plasmodium evolution. Recently obtained Plasmodium spp. genomic data enable identification of the conserved residues in the experimentally demonstrated hetero-multimeric, high molecular weight complex comprised of a short chitinase covalently linked to binding partners, von Willebrand factor A domain-related protein (WARP) and secreted ookinete adhesive protein (SOAP). Artificial intelligence-based high-resolution structural modeling using the DeepMind AlphaFold algorithm yielded highly informative 3D structures and insights into how short chitinases, WARP, and SOAP may interact at the atomic level to form the ookinete-secreted peritrophic matrix invasion complex. Elucidating the significance of the divergence of ookinete-secreted micronemal proteins among Plasmodium species could lead to a better understanding of ookinete invasion machinery and the co-evolution of Plasmodium -mosquito interactions.
Aiming to prevent the spread of contagious diseases has long been a central tenet of public health. In the present time, divisive political responses to mask wearing to prevent SARS-CoV-2 transmission have competed with sound public health advice for public attention. Here, we draw parallels in terms of individualism versus societal solidarity between the slow and ponderous development of transmission-blocking vaccines for malaria and advocacy for mask wearing to prevent COVID-19.
The Plasmodium ookinete uses chitinase activity to penetrate the acellular, chitin-containing peritrophic matrix to invade the mosquito vector. Plasmodium ookinetes from different parasite clades secrete two structurally distinct forms of chitinase, one, a short form lacking a C-terminal putative chitinbinding domain (CBD), the other, a long form with both proenzyme and C-terminal putative chitin-binding domains. Here, we structurally and functionally characterize the three cysteines in the short chitinase of the humaninfecting malaria parasite, P. falciparum testing the hypothesis that one unpaired cysteine would not contribute to chitinase-specific enzymatic activity which would identify this residue as potentially involved in intermolecular disulfide bonding and heteromultimeric invasion complex formation as previously described. To test this hypothesis, we produced and characterized recombinant wild-type and cysteine-mutation PfCHT1 proteins in E. coli and used biophysical and enzymatic approaches to examine their enzymatic activities and chitin-binding affinities. The cysteine-203 PfCHT1 mutation had no effect on chitinolytic and chitin-binding functions. The cysteine-220 and cysteine-230 mutants were enzymatically inactive and did not bind to chitin. The artificial intelligence-based protein prediction algorithm, AlphaFold, correctly identified the involvement of cys-220 and cys-230 in the intramolecular disulfide linkages key to maintaining properly folded chitinase structural integrity. AlphaFold predicted that cys-203 cysteine is surface exposed and thus involved in intermolecular protein-protein interaction. Production of the cys-to-ser 203 PfCHT1 mutant facilitated recombinant protein production. Future cellular and biochemical studies are needed to further understand details of Plasmodium ookinete mosquito midgut invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.