Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal β-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.
Tpp49Aa1 from Lysinibacillus sphaericus is a Toxin_10 family protein that must interact with Cry48Aa1, a 3-domain crystal protein, to produce potent mosquitocidal activity, specifically against Culex quinquefasciatus mosquitoes. We use Culex cell lines to demonstrate for the first time transient detrimental effects of individual toxin components and widen the known target range of the proteins. MHz serial femtosecond crystallography at a nano-focused X-ray free electron laser allowed rapid and high-quality data collection to determine the Tpp49Aa1 structure at 2.2 Å resolution from the merged X-ray diffraction data. The structure revealed the packing of Cry49Aa1 within the natural nanocrystals isolated from sporulated bacteria, as a homodimer with a large intermolecular interface. We then modelled the potential interaction between Tpp49Aa1 and Cry48Aa1. The structure sheds light on natural crystallisation and, along with cell-based assays broadens our understanding of this two-component system.
The Hbl toxin is a three-component haemolytic complex produced by Bacillus cereus sensu lato strains and implicated as a cause of diarrhoea in B. cereus food poisoning. While the structure of the HblB component of this toxin is known, the structures of the other components are unresolved. Here, we describe the expression of the recombinant HblL1 component and the elucidation of its structure to 1.36 Å. Like HblB, it is a member of the alpha-helical pore-forming toxin family. In comparison to other members of this group, it has an extended hydrophobic beta tongue region that may be involved in pore formation. Molecular docking was used to predict possible interactions between HblL1 and HblB, and suggests a head to tail dimer might form, burying the HblL1 beta tongue region.
Bacillus thuringiensis (Bt) proteins are an environmentally safe and effective alternative to chemical pesticides and have been used as biopesticides, with great commercial success, for over 50 years. Global agricultural production is predicted to require a 70% increase until 2050 to provide for an increasing population. In addition to agriculture, Bt proteins are utilised to control human vectors of disease – namely mosquitoes – which account for >700,000 deaths annually. The evolution of resistance to Bt pesticial toxins threatens the progression of sustainable agriculture. Whilst Bt protein toxins are heavily utilised, the exact mechanisms behind receptor binding and toxicity are unknown. It is critical to gain a better understanding of these mechanisms in order to engineer novel toxin variants and to predict, and prevent, future resistance evolution. This review focuses on the role of carbohydrate binding in the toxicity of the most utilised group of Bt pesticidal proteins – three domain Cry (3D-Cry) toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.