We sampled abiotic and food web components in an impacted estuarine system to assess the transfer and fate of rare earth elements (REE). REE (based on dry weight) were measured in sediments, suspended particulate matter (SPM), and organisms from different trophic levels. The highest ∑REE concentrations were measured in sediments (180 ± 4.24 mg kg −1 ) and SPM (163 ± 12.6 mg kg −1 ). Phytoplankton (45.7 ± 5.31 mg kg −1 ), periphyton (51.6 ± 1.81 mg kg −1 ), and zooplankton (68.5 ± 1.27 mg kg −1 ) are the major sources of exposure and transfer of REE to the food web. REE concentrations were several orders of magnitude lower in bivalves, crustaceans, and fish (6.01 ± 0.11, 1.22 ± 0.18, and 0.059 ± 0.003 mg kg −1 , respectively) than in plankton. The ∑REE declined as a function of the trophic position, as determined by functional feeding groups and δ 15 N, indicating that REE were subject to trophic dilution. Our study suggests that the consumption of seafood is unlikely to be an important source of REE for humans. However, given the numerous sources of dietary introduction of REE, they should be monitored for a possible harmful cumulative effect. This study provides new key information on REE's baseline concentrations and trophic transfers and patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.