Background: Antibacterial resistance is a serious public health problem infecting millions in the global population. Currently, there are few antimicrobials on the market against resistant bacterial infections. Therefore, there is an urgent need for new therapeutic options against these strains. Objective: In this study, we synthesized and evaluated ten Bis(2-hydroxynaphthalene-1,4-dione) against Gram-positive strains, including a hospital Methicillin-resistant (MRSA), and Gram-negative strains. Method: The compounds were prepared by condensation of aldehydes and lawsone in the presence of different L-aminoacids as catalysts in very good yields. The compounds were submitted to antibacterial analysis through disk diffusion and Minimal Inhibitory Concentration (MIC) assays. Result: L-aminoacids have been shown to be efficient catalysts in the preparation of Bis(2- hydroxynaphthalene-1,4-dione) from 2-hydroxy-1,4-naphthoquinones and arylaldehydes in excellent yields of up to 96%. The evaluation of the antibacterial profile against Gram-positive strains (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228) also including a hospital Methicillin-resistant S. aureus (MRSA) and Gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae ATCC 4352), revealed that seven compounds showed antibacterial activity within the Clinical and Laboratory Standards Institute (CLSI) levels mainly against P. aeruginosa ATCC 27853 (MIC 8-128 µg/mL) and MRSA (MIC 32-128 µg/mL). In addition, the in vitro toxicity showed all derivatives with no hemolytic effects on healthy human erythrocytes. Furthermore, the derivatives showed satisfactory theoretical absorption, distribution, metabolism, excretion, toxicity (ADMET) parameters, and a similar profile to antibiotics currently in use. Finally, the in silico evaluation pointed to a structure-activity relationship related to lipophilicity for these compounds. This feature may help them in acting against Gram-negative strains, which present a rich lipid cell wall selective for several antibiotics. Conclusion: Our data showed the potential of this series for exploring new and more effective antibacterial activities in vivo against other resistant bacteria.
Recently, the well-known geographically wide distribution of sporotrichosis in Brazil, combined with the difficulties of effective domestic feline treatment, has emphasized the pressing need for new therapeutic alternatives. This work considers a range of synthetic derivatives as potential antifungals against Sporothrix brasiliensis isolated from cats from the hyperendemic Brazilian region. Six S. brasiliensis isolates from the sporotrichotic lesions of itraconazole responsive or non-responsive domestic cats were studied. The minimum inhibitory concentrations (MICs) of three novel hydrazone derivatives and eleven novel quinone derivatives were determined using the broth microdilution method (M38-A2). In silico tests were also used to predict the pharmacological profile and toxicity parameters of these synthetic derivatives. MICs and MFCs ranged from 1 to >128 µg/mL. The ADMET computational analysis failed to detect toxicity while a good pharmacological predictive profile, with parameters similar to itraconazole, was obtained. Three hydrazone derivatives were particularly promising candidates as antifungal agents against itraconazole-resistant S. brasiliensis from the Brazilian hyperendemic region. Since sporotrichosis is a neglected zoonosis currently spreading in Latin America, particularly in Brazil, the present data can contribute to its future control by alternative antifungal drug design against S. brasiliensis, the most virulent and prevalent species of the hyperendemic context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.