The latex obtained from Hancornia speciosa is used in folk medicine for treatment of several diseases, such as acne, warts, diabetes, gastritis and inflammation. In this work, we describe the biocompatibility assessment and angiogenic properties of H. speciosa latex and its potential application in medicine. The physical-chemical characterization was carried out following different methodologies (CHN elemental analyses; thermogravimetric analyses and Fourier transform infrared spectroscopy). The biocompatibility was evaluated through cytotoxicity and genotoxicity tests in fibroblast mouse cells and the angiogenic properties were evaluated using the chick chorioallantoic membrane (CAM) assay model. The physical-chemical results showed that the structure of Hancornia speciosa latex biomembrane is very similar to that of Hevea brasiliensis (commercially available product). Moreover, the cytotoxicity and genotoxicity assays showed that H. speciosa latex is biocompatible with life systems and can be a good biomaterial for medical applications. The CAM test showed the efficient ability of H. speciosa latex in neovascularization of tissues. The histological analysis was in accordance with the results obtained in the CAM assay. Our data indicate that the latex obtained from H. speciosa and eluted in water showed significant angiogenic activity without any cytotoxic or genotoxic effects on life systems. The same did not occur with H. speciosa latex stabilized with ammonia. Addition of ammonia does not have significant effects on the structure of biomembranes, but showed a smaller cell survival and a significant genotoxicity effect. This study contributes to the understanding of the potentialities of H. speciosa latex as a source of new phytomedicines.
Modern medicine has been searching for new and more efficient strategies for diagnostics and therapeutics applications. Considering this, porphyrin molecules have received great interest for applications in photodiagnostics and phototherapies, even as magnetic nanoparticles for drug-delivery systems and magnetic-hyperthermia therapy. Aiming to obtain a multifunctional system, which combines diagnostics with therapeutic functions on the same platform, the present study employed UV/vis absorption and fluorescence spectroscopies to evaluate the interaction between meso-tetrakis(p-sulfonatofenyl)porphyrin (TPPS) and maghemite nanoparticles (γ-FeO). These spectroscopic techniques allowed us to describe the dynamics of coupling porphyrins on nanoparticles and estimate the number of 21 porphyrins per nanoparticle. Also, the binding parameters, such as the association constants (K = 8.89 × 10 M) and bimolecular quenching rate constant (k = 2.54 × 10 M s) were obtained. These results suggest a static quenching process where the electrostatic attraction plays an essential role. The work shows that spectroscopic techniques are powerful tools to evaluate the coupling of organic molecules and nanoparticles. Besides, the system studied provides a relevant background for potential applications in bionanotechnology and nanomedicine, such as (1) nanodrug delivery system, (2) photodiagnostics/theranostics, and/or (3) a combined action of photodynamic and hyperthermia therapies, working in a synergetic way.
reports on new nitro/nitrosyl Ru-based complexes, which were synthesized with the purpose of using them as precursors to obtain supramolecular ruthenium porphyrin species ({TPyP[Ru (NO 2)(5,5 0-Mebipy) 2 ] 4 }(PF 6) 4) and ({TPyP[Ru(NO)(5,5 0-Mebipy) 2 ] 4 }(PF 6) 12). The photochemical and photophysical properties of these porphyrin species were investigated. Results show that the complex containing nitrite is able to produce NO by homolytic O-NO cleavage (F PPh NO = 0.05) while the {TPyP[Ru (NO)(5,5 0-Mebipy) 2 ] 4 }(PF 6) 12 does it by direct labilization (F PPh NO = 0.53) of the RuÀ ÀNO bond. Furthermore, a triplet quantum yield of 0.09 and 0.27 was observed for complexes containing nitrite and nitric oxide, respectively. The reactive oxygen species quantum yield for the complex {TPyP[Ru(NO) (5,5 0-Mebipy) 2 ] 4 }(PF 6) 12 (0.78) is consistent with the sum of quantum yields NO release (0.53) and triplet state (0.27), which suggests that both processes participate in the formation of the reactive species. Our results show that combining these characteristics, NO production and triplet states, on the same platform could induce a synergic effect, leading to a considerable improvement in the photodynamic action of these complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.