Dengue, an arboviral disease transmitted by Aedes mosquitoes, has been endemic in Brazil for decades. However, vector-control strategies have not led to a significant reduction in the disease burden and have not been sufficient to prevent chikungunya and Zika entry and establishment in the country. In Rio de Janeiro city, the first Zika and chikungunya epidemics were detected between 2015 and 2016, coinciding with a dengue epidemic. Understanding the behaviour of these diseases in a triple epidemic scenario is a necessary step for devising better interventions for prevention and outbreak response. We applied scan statistics analysis to detect spatio-temporal clustering for each disease separately and for all three simultaneously. In general, clusters were not detected in the same locations and time periods, possibly owing to competition between viruses for host resources, depletion of susceptible population, different introduction times and change in behaviour of the human population (e.g. intensified vector-control activities in response to increasing cases of a particular arbovirus). Simultaneous clusters of the three diseases usually included neighbourhoods with high population density and low socioeconomic status, particularly in the North region of the city. The use of space–time cluster detection can guide intensive interventions to high-risk locations in a timely manner, to improve clinical diagnosis and management, and pinpoint vector-control measures.
Despite all the research done on the first Zika virus (ZIKV) epidemics, it was only after the Brazilian epidemic that the congenital Zika Syndrome was described. this was made possible due to the large number of babies born with microcephaly in the Northeast region (NE) in a narrow time. We hypothesize that the fivefold difference in the rate of microcephalic neonates between the NE and other regions is partially an effect of the population prior immunity against Dengue viruses (DENV), that cross-react with ZIKV. In this ecological study, we analysed the interaction between dengue fever epidemics from 2001 to 2014 and the 2015/2016 microcephaly epidemic in 400 microregions in Brazil using random-effects models under a Bayesian approach. The estimated effect of the time lag between the most recent large dengue epidemic (>400/100,000 inhabitants) and the microcephaly epidemic ranged from protection (up to 6 years prior) to an increased risk (from 7 to 12 years). This sustained window of protection, larger than described in previous longitudinal studies, is possibly an effect of herd immunity and of multiple exposures to DENV that could boost immunity.
Data on the burden of disease and circulation patterns of influenza B lineages for Brazil are limited. This review aims to describe the pattern of influenza B occurrence in Brazil to have a better understanding of its epidemiology and its relevance when considering seasonal influenza vaccine composition. A review of the data including analysis of international and local surveillance data as well as information from online search of databases using Medical Subject Headings terms in conjunction with screening of abstracts from scientific events was performed. Based on international epidemiologic surveillance data, moderate levels of influenza B disease (19%; 2006-2014) were observed. Of these nine years, it was possible to compare data from three years (2007, 2008 and 2013) which have information on the circulating influenza B lineage. Co-circulation of influenza B lineages was observed in all these three influenza seasons, of which, during one season, a high degree of mismatch between the vaccine lineage and the predominant circulating lineage (91.4% [2013]) was observed. Local surveillance data reveal a distinct and dynamic distribution of respiratory viruses over the years. Data from published literature and abstracts show that influenza B is a significant cause of disease with an unpredictable circulation pattern and showing trends indicating reemergence of the B/Victoria lineage. The abstracts report notable levels of co-circulation of both influenza B lineages (2000-2013). Mismatch between the Southern hemisphere vaccine and the most prevalent circulating viruses in Brazil were observed in five influenza seasons. The evidence on co-circulation of two influenza B lineages and mismatched seasons in Brazil indicates the benefit of quadrivalent influenza vaccines in conferring broader seasonal influenza protection. Additionally, improving influenza surveillance platforms in Brazil is important for monitoring disease trends and the impact of introducing seasonal influenza vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.