Junonia evarete Cramer is a fast-flying butterfly that perches on the ground with wings opened exhibiting four eyespots close to wing borders. These eyespots presumably function either to intimidate predators, like insectivorous birds, or to deflect bird attacks to less vital parts of the body. We assessed the form, frequency, and location of beak marks on the wings of wild butterflies in central Brazil during two not consecutive years. We found that almost 50% of males and 80% of females bore signals of predator attacks (wing tears), most of them consisting of partially or totally V-shaped forms apparently produced by birds. Males were significantly less attacked and showed a lower proportion of attacks on eyespots than females, suggesting they are better to escape bird attacks. In contrast, females were heavily attacked on eyespots. Eyespot tears in females were higher (and significant different) than expected by chance, indicating that birds do attempt to reach the eyespots when striking on these butterflies. Other comparisons involving the proportion of tears directed or not directed to eyespots in males and females are presented and discussed.
Anthropogenic global warming and deforestation are significant drivers of the global biodiversity crisis. Ectothermic and viviparous animals are especially vulnerable since high environmental temperatures can impair embryonic development, but we lack knowledge about these effects upon Neotropical organisms. Here, we estimate how much of the current area with suitable habitats overlaps with protected areas and model the combined effects of climate change and deforestation on the geographic distribution of the viviparous Neotropical lizard Notomabuya frenata (Scincidae). This species ranges in Brazil, Argentina, Paraguay, and Bolivia. We use environmental and physiological variables (locomotor performance and hours of activity) to predict suitable present and future areas, considering different scenarios of greenhouse gas emissions and deforestation. The most critical predictors of habitat suitability were isothermality (i.e., the ratio between mean diurnal temperature range and annual temperature range), precipitation during winter, and hours of activity under lower thermal extremes. Still, our models predict a contraction of suitable habitats in all future scenarios and the displacement of these areas towards eastern South America. In addition, protected areas are not enough to ensure suitable habitats for this species. Our findings highlight the vulnerability of tropical and viviparous ectotherms and suggest that even widely distributed species, such as N. frenata, may have their conservation compromised shortly due to the low representativeness of their suitable habitats in protected areas combined with the synergistic effects of climate change and deforestation. We stress the need for decision-makers to consider the impact of range shifts in creating protected areas and managing endangered species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.