Fluconazole is a broad-spectrum triazole antifungal that is well-established as the first-line treatment for Candida albicans infections. Despite its extensive use, reports on its genotoxic/mutagenic effects are controversial; therefore, further studies are needed to better clarify such effects. African green monkey kidney (Vero) cells were exposed in vitro to different concentrations of fluconazole and were then evaluated for different parameters, such as cytotoxicity (MTT/cell death by fluorescent dyes), genotoxicity/mutagenicity (comet assay/micronucleus test), and induction of oxidative stress (DCFH-DA assay). Fluconazole was used at concentrations of 81.6, 163.2, 326.5, 653, 1306, and 2612.1μM for the MTT assay and 81.6, 326.5, and 1306μM for the remaining assays. MTT results showed that cell viability reduced upon exposure to fluconazole concentration of 1306μM (85.93%), being statistically significant (P<0.05) at fluconazole concentration of 2612.1μM (35.25%), as compared with the control (100%). Fluconazole also induced necrosis (P<0.05) in Vero cell line when cells were exposed to all concentrations (81.6, 326.5, and 1306μM) for both tested harvest times (24 and 48 h) as compared with the negative control. Regarding genotoxicity/mutagenicity, results showed fluconazole to increase significantly (P<0.05) DNA damage index, as assessed by comet assay, at 1306μM versus the negative control (DI=1.17 vs DI=0.28, respectively). Micronucleus frequency also increased until reaching statistical significance (P<0.05) at 1306μM fluconazole (with 42MN/1000 binucleated cells) as compared to the negative control (13MN/1000 binucleated cells). Finally, significant formation of reactive oxygen species (P<0.05) was observed at 1306μM fluconazole vs the negative control (OD=40.9 vs OD=32.3, respectively). Our experiments showed that fluconazole is cytotoxic and genotoxic in the assessed conditions. It is likely that such effects may be due to the oxidative properties of fluconazole and/or the presence of FMO (flavin-containing monooxygenase) in Vero cells.
Artesunate (ARS) is a semi‐synthetic derivative of artemisinin, used as an outstanding antimalarial drug, which also displays antitumor, anti‐inflammatory and immunosuppressive effects. In spite of the numerous reports showing the antitumor activity of ARS, the particular mechanisms associated with its cytotoxicity and genotoxicity in non‐neoplastic human cells remain unclear. Here we aimed to verify the specific chromosome damages and the changes in markers of oxidative‐nitrosative stress and apoptosis triggered by ARS exposure in human peripheral blood lymphocytes. Cultures were incubated in the presence of ARS and the number of binucleated cells was determined. To discriminate between micronuclei (MN) containing a whole chromosome or an acentric chromosome, the MN test was employed in combination with the fluorescence in situ hybridization assay. Alterations in the levels of superoxide anion (O2−) and nitric oxide (NO) were measured by the nitroblue tetrazolium and Griess assay, respectively. Changes in the expression of the apoptotic markers were assessed by immunocytochemistry. We found that ARS induced a significant formation of both centromere‐positive MN (C+ MN) and centromere‐negative MN (C– MN). These alterations were accompanied by an increase in both cellular levels of O2− and total NO production, and a remarkable enhancement in the expression of the apoptotic markers cytochrome c and caspases 8 and 9. Together these findings reveal that ARS induces changes in the oxidative‐nitrosative status of human lymphocytes, which are followed by apoptosis and clastogenic and aneugenic effects.
Background Methylmercury (MeHg) is a potent toxicant able to harm human health, and its main route of contamination is associated with the consumption of contaminated fish and other seafood. Moreover, dental amalgams are also associated with mercury release on human saliva and may contribute to the accumulation of systemic mercury. In this way, the oral cavity seems to be the primary location of exposure during MeHg contaminated food ingestion and dental procedures but there is a lack of literature about its effects on dental tissues and the impact of this toxicity on human health. In this way, this study aimed to analyze the effects of different doses of MeHg on human dental pulp stem cells after short-term exposure. Methods Dental pulp stem cells from human exfoliated deciduous teeth (SHED) were treated with 0.1, 2.5 and 5 µM of MeHg during 24 h. The MeHg effects were assessed by evaluating cell viability with Trypan blue exclusion assay. The metabolic viability was indirectly assessed by MTT reduction assay. In order to evaluate an indicative of antioxidant defense impairment, cells exposed to 0.1 and 5 µM MeHg were tested by measuring glutathione (GSH) level. Results It was observed that cell viability decreased significantly after exposure to 2.5 and 5 µM of MeHg, but the metabolic viability only decreased significantly at 5 µM MeHg exposure, accompanied by a significant decrease in GSH levels. These results suggest that an acute exposure of MeHg in concentrations higher than 2.5 µM has cytotoxic effects and reduction of antioxidant capacity on dental pulp stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.