The aim of the present study was to investigate the role of histatin 1 (Hst1) in human corneal epithelial cells (HCECs) exposed to ultraviolet (UV) radiation. Prior to UV irradiation for various durations, HCECs were pre-treated with different concentrations of Hst1 and the effect on cell apoptosis and cell viability were examined by flow cytometry, alamarBlue® and MTT assays to determine the optimal concentration of Hst1 and UV dose. Cells were then subjected to quantitative PCR, ELISA and western blot analysis to determine the expression of cell damage-associated genes. HCECs exposed to UV light for 1 h displayed decreased viability when compared to that of control cells, and a 3 h UV exposure markedly increased the apoptotic rate of HECEs, while apoptosis was inhibited by pre-treatment with Hst1. UV radiation downregulated expression of insulin-like growth factor (IGF)-1 and B-cell lymphoma 2 (Bcl-2), while it upregulated Bcl-2-associated X protein (Bax) expression. Hst1 protected HCECs against UV-induced damage by upregulating the expression of IGF-1 protein and increasing the Bcl-2/Bax ratio. In conclusion, Hst1 may prevent UV-induced damage to corneal epithelial tissue injury and promote its healing.
Classically activated macrophages (M1) are proinflammatory effectors and closely related to the progression of neurotoxicity. As a powerful psychostimulant and addictive drug, methamphetamine (Meth) abuse could result in long-lasting abnormalities in retina. This study investigated the effect of Meth at nontoxic concentration on macrophage activation state and its resultant toxicity to photoreceptor cells. Results showed that cytotoxicity was caused by Meth on 661 W cells after coculturing with RAW264.7 macrophage. RAW264.7 cells tended to switch to the M1 phenotype, releasing more proinflammatory cytokines after treatment with Meth. Meth could also upregulate the M1-related gene and protein expression. Our study demonstrated that Meth promoted macrophage polarization from M0 to M1 and induced inflammatory response, providing the scientific rationale for the photoreceptor cell damage caused by the Meth abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.