A medical device of micro-jet injection for drug delivery is described in this paper. The device is powered by a Lorentz force driver (or voice coil motor, VCM) and is able to perform pulsed injection through controlling the direction of the current passing through the device. The driving force and the resulting injection pressure are also controllable through control of the current intensity of the VCM. A physical model was established by combining the existing jet injection model with the relationship of the driving force obtained from a finite-element-method (FEM) analysis, and was verified by experimental measurements. The numerical calculation of the physical model reveals the relationship between the injection pressure and the current intensity of VCM under system conditions. In normal cases, the injection dose can be varied. Thus the relationship between the current intensity of VCM and the dose value was numerically obtained under the condition for the maximum injection pressure to be above a threshold value. These results can be used for optimization of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.