Sse1 is a cytosolic Hsp110 molecular chaperone of yeast, Saccharomyces cerevisiae. Its multifaceted roles in cellular protein homeostasis as Nucleotide Exchange Factor (NEF), as protein-disaggregase and as a Chaperone linked to Protein Synthesis (CLIPS), are well documented. In the currently study, we show that SSE1 genetically interacts with IRE1 and HAC1, the Endoplasmic Reticulum-Unfolded Protein Response (ER-UPR) sensors implicating its role in ER protein homeostasis. Interestingly, absence of this chaperone imparts unusual resistance to tunicamycin-induced ER stress which depends on the intact Ire1-Hac1 mediated ER-UPR signalling. Furthermore, cells lacking SSE1 show ER-stress-responsive inefficient reorganization of translating ribosomes from polysomes to monosomes and increased monosome content that drive uninterrupted protein translation. In consequence, the kinetics of ER-UPR is starkly different in sse1Δ strain where we show that stress response induction and restoration of homeostasis is prominently faster in contrast to the wildtype (WT) cells. Importantly, Sse1 plays a critical role in controlling the ER-stress mediated cell division arrest which is escaped in sse1Δ strain during chronic tunicamycin stress. Consequently, sse1Δ strain shows significantly higher cell viability in comparison to WT yeast, following short-term as well as long-term tunicamycin stress. In summary, we demonstrate a new role of Sse1 in ER protein homeostasis where the chaperone genetically interacts with ER-UPR pathway, controls the protein translation during ER stress and the kinetics of ER-UPR. More importantly, we show the crtiical role of Sse1 in regulating the ER-stress-induced cell division arrest and cell death during global ER stress by tunicamycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.