Reduction of excess nutrient application and balanced fertilizer use are the key mitigation options in agriculture. We evaluated Nutrient Expert (NE) tool-based site-specific nutrient management (SSNM) in rice and wheat crops by establishing 1594 side-by-side comparison trials with farmers’ fertilization practices (FFP) across the Indo-Gangetic Plains (IGP) of India. We found that NE-based fertilizer management can lower global warming potential (GWP) by about 2.5% in rice, and between 12 and 20% in wheat over FFP. More than 80% of the participating farmers increased their crop yield and farm income by applying the NE-based fertilizer recommendation. We also observed that increased crop yield and reduced fertilizer consumption and associated greenhouse gas (GHG) emissions by using NE was significantly influenced by the crop type, agro-ecology, soil properties and farmers’ current level of fertilization. Adoption of NE-based fertilizer recommendation practice in all rice and wheat acreage in India would translate into 13.92 million tonnes (Mt) more rice and wheat production with 1.44 Mt less N fertilizer use, and a reduction in GHG of 5.34 Mt CO2e per year over farmers’ current practice. Our study establishes the utility of NE to help implement SSNM in smallholder production systems for increasing crop yields and farmers’ income while reducing GHG emissions.
Zero-tillage, residue management and precision nutrient management techniques are being promoted in the rice-wheat (RW) production system of Indo-Gangetic Plains (IGPs) to enhance climate change adaptation and increase food production. These management practices may also influence greenhouse gas emissions through their effects on various soil processes such as oxidation-reduction and nitrification-denitrification. We measured soil fluxes of CH 4 and N 2 O in RW system under three tillage and residue management systems layered with four nitrogen (N) management treatments. The tillage and residue management systems comprised: conventional tillage (CT), zero-tillage without residue retention (ZT − R) and ZT with full residue retention (ZT + R) for both the crops. The four N management treatments for rice were: (a) basmati cultivar with recommended dose of nitrogen (RDN) applied in three splits, (b) basmati cultivar with 80% RDN as basal dose followed by Green Seeker (GS) guided N application, (c) hybrid cultivar with RDN applied in three splits and (d) hybrid with 80% RDN as basal dose followed by GS guided N application. The four N management treatments for wheat comprised combinations of RDN with and without relay green gram (GG), and 80% of RDN as basal dose followed by GS guided N application with and without relay GG. We employed the static chamber method to collect gas samples from the experimental plots which were subsequently analysed using gas chromatograph. Significant CH 4 emissions were detected only in the CT rice system during the initial phase of continuous flooding, irrespective of N management strategies. N fertilization management affected the pattern of N 2 O emission with higher emission rates during crop establishment phase under 80% RDN as basal followed by GS guided N application than conventional RDN. In case of wheat, 80% RDN as basal followed by GS guided N application also induced higher cumulative N 2 O emissions than applying RDN at three regular splits. In rice, ZT-based RW system emitted more N 2 O than CT-based system. Overall ZT-based RW system reduced CH 4 emission but this benefit is counterbalanced by higher N 2 O production compared to CT-based RW system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.