Multi-floor environments are usually ignored while designing an autonomous robot for indoor cleaning applications. However, for efficient operation in such environments, the ability of a robotic platform to traverse staircases is crucial. Staircase detection and localization is highly important for planning the traversal on staircases. This paper describes a deep learning approach using Convolutional Neural Networks (CNNs) based Robot Operation System (ROS) to staircase detection and localization. We use an object detection network to detect staircases in images. We also localize these staircases using a contour detection algorithm to detect the target point, a point close to the center of the first step, and the angle of approach to the target point. Experiments are performed with data obtained from images captured on different types of staircases at different view points/angles. Results show that the approach is very accurate in identifying the presence of the staircase in the working environment and is also able to locate the target point with good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.