Thrombospondin-1 (TSP1) can inhibit angiogenesis by interacting with endothelial cell CD36 or proteoglycan receptors. We have now identified ␣31 integrin as an additional receptor for TSP1 that modulates angiogenesis and the in vitro behavior of endothelial cells. Recognition of TSP1 and an ␣31 integrin-binding peptide from TSP1 by normal endothelial cells is induced after loss of cell-cell contact or ligation of CD98. Although confluent endothelial cells do not spread on a TSP1 substrate, ␣31 integrin mediates efficient spreading on TSP1 substrates of endothelial cells deprived of cell-cell contact or vascular endothelial cadherin signaling. Activation of this integrin is independent of proliferation, but ligation of the ␣31 integrin modulates endothelial cell proliferation. In solution, both intact TSP1 and the ␣31 integrin-binding peptide from TSP1 inhibit proliferation of sparse endothelial cell cultures independent of their CD36 expression. However, TSP1 or the same peptide immobilized on the substratum promotes their proliferation. The TSP1 peptide, when added in solution, specifically inhibits endothelial cell migration and inhibits angiogenesis in the chick chorioallantoic membrane, whereas a fragment of TSP1 containing this sequence stimulates angiogenesis. Therefore, recognition of immobilized TSP1 by ␣31 integrin may stimulate endothelial cell proliferation and angiogenesis. Peptides that inhibit this interaction are a novel class of angiogenesis inhibitors. INTRODUCTIONAngiogenesis under normal and pathological conditions is regulated by both positive and negative signals received from soluble growth factors and components of the extracellular matrix (reviewed by Folkman, 1995;Polverini, 1995;Hanahan and Folkman, 1996). Thrombospondins are a family of extracellular matrix proteins that have diverse effects on cell adhesion, motility, proliferation, and survival (reviewed by Bornstein, 1992Bornstein, , 1995Roberts, 1996). Two members of this family, thrombospondin-1 (TSP1) and thrombospondin-2, are inhibitors of angiogenesis (Good et al., 1990;Volpert et al., 1995). TSP1 inhibits growth, sprouting, and motility responses of endothelial cells in vitro (Good et al., 1990;Taraboletti et al., 1990;Iruela Arispe et al., 1991;Canfield and Schor, 1995;Tolsma et al., 1997) and, under defined conditions, induces programmed cell death in endothelial cells (Guo et al., 1997b). TSP1 inhibits angiogenesis in vivo in the rat corneal pocket and chick chorioallantoic membrane (CAM) angiogenesis assays (Good et al., 1990;Iruela-Arispe et al., 1999). The ability of TSP1 overexpression to suppress tumor growth and neovascularization in several tumor xenograft models provides further evidence for an antiangiogenic activity of TSP1 (Dameron et al., 1994;Weinstat-Saslow et al., 1994;Sheibani and Frazier, 1995;Hsu et al., 1996). Circulating TSP1 may also inhibit neovascularization of micrometastases in some cancers (Morelli et al., 1998;Volpert et al., 1998). A few studies, however, have concluded that TSP1 also has p...
Background Shigellosis accounts for substantial morbidity and mortality worldwide and is the second most common cause of moderate and severe diarrhoea in children. Methods This phase 2b study (NCT03527173), conducted between August 2018 and November 2019, evaluated vaccine efficacy (VE), safety, and immunogenicity of a Shigella sonnei GMMA candidate vaccine (1790GAHB) in adults, using a S. sonnei 53 G controlled human infection model. Participants (randomized 1:1) received two doses of 1790GAHB or placebo (GAHB-Placebo), at day (D) 1 and D29, and an oral challenge of S. sonnei 53 G at D57. VE was evaluated using several endpoints, reflecting different case definitions of shigellosis. For the primary endpoint, the success criterion was a lower limit of the 90% confidence interval >0. Findings Thirty-six and 35 participants received 1790GAHB or placebo, respectively; 33 and 29 were challenged, 15 and 12 developed shigellosis. VE was not demonstrated for any endpoint. Adverse events were more frequent in 1790GAHB versus placebo recipients post-vaccination. Anti- S. sonnei lipopolysaccharide (LPS) IgG responses increased at D29 and remained stable through D57 in group 1790GAHB; no increase was shown in placebo recipients. Interpretation 1790GAHB had an acceptable safety profile and induced anti-LPS IgG responses but did not demonstrate clinical efficacy against shigellosis. Baseline/pre-challenge antibody levels were higher in participants who did not develop shigellosis post-challenge, suggesting a role of anti-LPS IgG antibodies in clinical protection, although not fully elucidated in this study. For further vaccine development an increased S. sonnei O-antigen content is likely needed to enhance anti-LPS immune responses. Funding GlaxoSmithKline Biologicals SA, Bill and Melinda Gates Foundation
Shigella is a major cause of moderate to severe diarrhea largely affecting children (<5 years old) living in low- and middle-income countries. Several vaccine candidates are in development, and controlled human infection models (CHIMs) can be useful tools to provide an early assessment of vaccine efficacy and potentially support licensure. A lyophilized strain of S. sonnei 53G was manufactured and evaluated to establish a dose that safely and reproducibly induced a ≥60% attack rate. Samples were collected pre- and postchallenge to assess intestinal inflammatory responses, antigen-specific serum and mucosal antibody responses, functional antibody responses, and memory B cell responses. Infection with S. sonnei 53G induced a robust intestinal inflammatory response as well as antigen-specific antibodies in serum and mucosal secretions and antigen-specific IgA- and IgG-secreting B cells positive for the α4β7 gut-homing marker. There was no association between clinical disease outcomes and systemic or functional antibody responses postchallenge; however, higher lipopolysaccharide (LPS)-specific serum IgA- and IgA-secreting memory B cell responses were associated with a reduced risk of disease postchallenge. This study provides unique insights into the immune responses pre- and postinfection with S. sonnei 53G in a CHIM, which could help guide the rational design of future vaccines to induce protective immune responses more analogous to those triggered by infection. IMPORTANCE Correlate(s) of immunity have yet to be defined for shigellosis. As previous disease protects against subsequent infection in a serotype-specific manner, investigating immune response profiles pre- and postinfection provides an opportunity to identify immune markers potentially associated with the development of protective immunity and/or with a reduced risk of developing shigellosis postchallenge. This study is the first to report such an extensive characterization of the immune response after challenge with S. sonnei 53G. Results demonstrate an association of progression to shigellosis with robust intestinal inflammatory and mucosal gut-homing responses. An important finding in this study was the association of elevated Shigella LPS-specific serum IgA and memory B cell IgA responses at baseline with reduced risk of disease. The increased baseline IgA responses may contribute to the lack of dose response observed in the study and suggests that IgA responses should be further investigated as potential correlates of immunity.
Shigella is an important cause of diarrhea worldwide, and efforts are ongoing to produce a safe and effective Shigella vaccine. Although a clear immune correlate of protection has not been established, antibodies with bactericidal capacity may provide one means of protecting against shigellosis. Thus, it is important to measure the functional capacity of antibodies, as opposed to only binding activity. This article describes a simple, robust, and high-throughput serum bactericidal assay capable of measuring Shigella-specific functional antibodies in vitro. We show for the first time that this assay was successfully performed by multiple laboratories and generated highly comparable results, particularly when SBA titers were normalized using a reference standard. The serum bactericidal assay, along with a reference serum, should greatly facilitate Shigella vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.