The detection of person fatigue is one of the important tasks to detect drowsiness in the domain of image processing. Though lots of work has been carried out in this regard, there is a void of work shows the exact correctness. In this chapter, the main objective is to present an efficient approach that is a combination of both eye state detection and yawn in unconstrained environments. In the first proposed method, the face region and then eyes and mouth are detected. Histograms of Oriented Gradients (HOG) features are extracted from detected eyes. These features are fed to Support Vector Machine (SVM) classifier that classifies the eye state as closed or not closed. Distance between intensity changes in the mouth map is used to detect yawn. In second proposed method, off-the-shelf face detectors and facial landmark detectors are used to detect the features, and a novel eye and mouth metric is proposed. The eye results obtained are checked for consistency with yawn detection results in both the proposed methods. If any one of the results is indicating fatigue, the result is considered as fatigue. Second proposed method outperforms first method on two standard data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.