Recent findings suggest that hypercholesterolemia may contribute to the onset of Alzheimer’s disease (AD)-like dementia but the underlying mechanisms remain unknown. In this study, we evaluated the cognitive performance in rodent models of hypercholesterolemia in relation to neuroinflammatory changes and amyloid precursor protein (APP) processing, the two key parameters of AD pathogenesis. Groups of normal C57BL/6 and low density lipoprotein receptor (LDLR)-deficient mice were fed a high fat/cholesterol diet for an 8-week period and tested for memory in a radial arm maze. It was found that the C57BL/6 mice receiving a high fat diet were deficient in handling an increasing working memory (WM) load compared to counterparts receiving a control diet while the hypercholesterolemic LDLR−/− mice showed impaired WM regardless of diet. Immunohistochemical analysis revealed the presence of activated microglia and astrocytes in the hippocampi from high fat-fed C57BL/6 mice and LDLR−/− mice. Consistent with a neuroinflammatory response, the hyperlipidemic mice showed increased expression of cytokines/mediators including TNFα, IL-1β, IL-6, NOS2 and COX2. There was also an induced expression of the key APP processing enzyme i.e., BACE1 in both high fat/cholesterol-fed C57BL/6 and LDLR−/− mice accompanied by an increased generation of C-terminal fragments (CTFs) of APP. Although ELISA for Aβ failed to record significant changes in the non-transgenic mice, a 3-fold increase in Aβ-40 accumulation was apparent in a strain of transgenic mice expressing wt hAPP on high fat/cholesterol diet. The findings link hypercholesterolemia with cognitive dysfunction potentially mediated by increased neuroinflammation and APP processing in a non-transgenic mouse model.
BackgroundRodent studies show that neurogenesis is necessary for mediating the salutary effects of antidepressants. Nonhuman primate (NHP) studies may bridge important rodent findings to the clinical realm since NHP-depression shares significant homology with human depression and kinetics of primate neurogenesis differ from those in rodents. After demonstrating that antidepressants can stimulate neurogenesis in NHPs, our present study examines whether neurogenesis is required for antidepressant efficacy in NHPs.Materials/MethodologyAdult female bonnets were randomized to three social pens (N = 6 each). Pen-1 subjects were exposed to control-conditions for 15 weeks with half receiving the antidepressant fluoxetine and the rest receiving saline-placebo. Pen-2 subjects were exposed to 15 weeks of separation-stress with half receiving fluoxetine and half receiving placebo. Pen-3 subjects 2 weeks of irradiation (N = 4) or sham-irradiation (N = 2) and then exposed to 15 weeks of stress and fluoxetine. Dependent measures were weekly behavioral observations and postmortem neurogenesis levels.ResultsExposing NHPs to repeated separation stress resulted in depression-like behaviors (anhedonia and subordinance) accompanied by reduced hippocampal neurogenesis. Treatment with fluoxetine stimulated neurogenesis and prevented the emergence of depression-like behaviors. Ablation of neurogenesis with irradiation abolished the therapeutic effects of fluoxetine. Non-stressed controls had normative behaviors although the fluoxetine-treated controls had higher neurogenesis rates. Across all groups, depression-like behaviors were associated with decreased rates of neurogenesis but this inverse correlation was only significant for new neurons in the anterior dentate gyrus that were at the threshold of completing maturation.ConclusionWe provide evidence that induction of neurogenesis is integral to the therapeutic effects of fluoxetine in NHPs. Given the similarity between monkeys and humans, hippocampal neurogenesis likely plays a similar role in the treatment of clinical depression. Future studies will examine several outstanding questions such as whether neuro-suppression is sufficient for producing depression and whether therapeutic neuroplastic effects of fluoxetine are specific to antidepressants.
The notion that microvascular abnormalities contribute to deleterious changes in the Alzheimer's disease (AD) brain is supported by work from our laboratory and others demonstrating biochemical and functional alterations of the microcirculation in AD. The objective of this study is to determine whether levels of neurotoxic (thrombin) and inflammatory (interleukin 8 (IL-8), integrins αV β3 and αV β5) proteins are altered in microvessels isolated from AD patients compared to levels in vessels obtained from non-demented age-matched controls. We also evaluate in AD and control microvessels expression of the transcription factor hypoxia-inducible factor 1-α (HIF1-α), which regulates pro-inflammatory gene expression, and the regulation of HIF1-α expression by thrombin in cultured brain endothelial cells. Our results indicate that in AD there are high levels of expression of the neurotoxic protease thrombin and the inflammation-associated proteins IL-8 and αV β3 and αV β5 integrins. HIF1-α is higher in AD microvessels compared to control and thrombin treatment of cultured brain endothelial cells results in increased expression of HIF1-α. These data suggest that in AD the cerebral microcirculation is a source of neurotoxic and inflammatory mediators and as such contributory to pathologic processes ongoing in the AD brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.