Smart grids promise a more reliable, efficient, economically viable, and environmentfriendly electricity infrastructure for the future. State estimation in smart grids plays a pivotal role in system monitoring, reliable operation, automation, and grid stabilization. However, the power consumption data collected from the users during state estimation can be privacy-sensitive. Furthermore, the topology of the grid can be exploited by malicious entities during state estimation to launch attacks without getting detected. Motivated by the essence of a secure state estimation process, we consider a weighted-least-squares estimation carried out batch-wise at repeated intervals, where the resource-constrained clients utilize a malicious cloud for computation services. We propose a secure masking protocol based on data obfuscation that is computationally efficient and successfully verifiable in the presence of a malicious adversary. Simulation results show that the state estimates calculated from the original and obfuscated dataset are exactly the same while demonstrating a high level of obscurity between the original and the obfuscated dataset both in time and frequency domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.