Ag metallization on the surface of SnO 2 catalyst was performed by the photoreduction method, and its presence was confirmed by the (111), (200), (220), and (311) hkl planes of Ag metal by powder X-ray diffraction technique. Further lattice parameters "a" and "c" of the SnO 2 tetragonal unit cell show prominent changes on metallization. Ultraiolet-visible absorption spectrum of Ag-SnO 2 shows the extended adsorption in the visible region up to almost~565 nm due to the surface plasmon resonance (SPR) effect. Percentage composition of the elements present in the SnO 2 and Ag-SnO 2 samples were confirmed by the energy-dispersive X-ray analysis and the inductively coupled plasma-atomic emission spectroscopic analysis techniques, and the spherical morphology of these samples were confirmed by the scanning electron microscopy. The photoluminescence technique confirms the reduction of recombination of photogenerated charge carriers by 44% in the case of Ag-SnO 2 . The metal-metal oxide contact was found to be Ohmic rather than Schottky. The higher activity of the Ag-SnO 2 nanoparticles are correlated to the SPR effect, metal-induced gap states, inherently created structural defects, the ability of Sn to show multiple oxidation states, variation in the surface oxygen concentration, and also to the Ohmic junction. Synergistic effect between electronic/intrinsic defect energy levels of Ag-SnO 2 photocatalyst with the redox potential of the fast red dye leads to the higher quantum efficiency. K E Y W O R D S band bending, charge carriers, metal deposition, metal-induced gap states, Ohmic junction, photocatalysis, surface plasmon resonance effect
Photocatalytic degradation of the herbicide, pendimethalin (PM) was investigated with BaTiO3/TiO2 UV light system in the presence of peroxide and persulphate species in aqueous medium. The nanoparticles of BaTiO3 and TiO2 were obtained by gel to crystallite conversion method. These photo catalysts are characterized by energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), x-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) adsorption isotherm and reflectance spectral studies. The quantum yields for TiO2 and BaTiO3 for the degradation reactions are 3.166 Einstein m(-2) s(-1) and 2.729 Einstein m(-2) s(-1) and catalytic efficiencies are 6.0444 x 10(-7) mg(-2)h(-1)L2 and 5.403 x 10(-7) mg(-2)h(-1)L2, respectively as calculated from experimental results. BaTiO3 exhibited comparable photocatalytic efficiency in the degradation of pendimethalin as the most widely used TiO2 photocatalyst. The persulphate played an important role in enhancing the rate of degradation of pendimethalin when compared to hydrogen peroxide. The degradation process of pendimethalin followed the first-order kinetics and it is in agreement with Langmuir-Hinshelwood model of surface mechanism. The reason for high stability of pendimethalin for UV-degradation even in the presence of catalyst and oxidizing agents were explored. The higher rate of degradation was observed in alkaline medium at pH 11. The degradation process was monitored by spectroscopic techniques such as ultra violet-visible (UV-Vis), infrared (IR) and gas chromatography mass spectroscopy (GC-MS). The major intermediate products identified were: N-propyl-2-nitro-6-amino-3, 4-xylidine, (2, 3-dimethyl-5-nitro-6-hydroxy amine) phenol and N-Propyl-3, 4-dimethyl-2, 6-dinitroaniline by GC-MS analysis and the probable reaction mechanism has been proposed based on these products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.