Aspergillus fumigatus, an opportunistic fungal pathogen, infects the human host via inhalation of airborne conidia. Adhesion of fungal conidia, to host cells and extracellular matrix (ECM) components associated with host tissue surfaces, is thought to be the primary step in the pathogenesis and dissemination of infection. To identify novel adhesion proteins (adhesins) of A. fumigatus, we screened its proteome in silico using spaan (software program for prediction of adhesins and adhesin-like proteins using neural networks). One of the predicted adhesin-encoding genes with a P ad (probability of being adhesin) value >0.9, the gene encoding extracellular thaumatin domain protein (AfCalA), was cloned and expressed in Escherichia coli. Recombinant AfCalAp showed significant binding with laminin and murine lung cells. Anti-AfCalAp antibodies inhibited the binding of AfCalAp to laminin in a dose-dependent manner. Significant binding of anti-AfCalAp antibodies to 2 h swollen conidia suggests the presence of AfCalAp on the conidial surface. AfCalA transcript was not detectable in resting conidia but was detected in conidia incubated with RPMI 1640 medium in the presence and absence of lung epithelial cell line (A539)-derived ECM. Elevated levels of IgE antibodies specific to AfCalAp were observed in the sera of two out of seven patients with allergic bronchopulmonary aspergillosis. The study confirms the relevance of the bioinformatic approach for predicting fungal adhesins and establishes AfCalAp as a novel laminin-binding protein of A. fumigatus.
Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and time-dependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SP-D in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.
Pulmonary surfactant protein-D (SP-D) is a multifunctional, pattern recognition molecule involved in resistance to allergen challenge and pulmonary inflammation. In view of therapeutic effects of exogenous SP-D or recombinant fragment of human surfactant protein-D (rhSP-D) (composed of eight Gly-X-Y collagen repeat sequences, homotrimeric neck and lectin domains) in murine models of lung allergy and hypereosinophilic SP-D gene-deficient mice, we investigated the possibility of a direct interaction of purified rhSP-D with human eosinophils derived from allergic patients and healthy donors. rhSP-D showed a sugar- and calcium-dependent binding to human eosinophils, suggesting involvement of its carbohydrate recognition domain. While eosinophils from allergic patients showed a significant increase in apoptosis, oxidative burst and CD69 expression in presence of rhSP-D, eosinophils from healthy donors showed no significant change. However, these eosinophils from healthy donors when primed with IL-5 exhibited increase in apoptosis on incubation with rhSP-D. Apoptosis mediated by rhSP-D in primed eosinophils was not affected by the antioxidant, N-acetyl-L-cysteine. There was a manifold increase in binding of rhSP-D to apoptotic eosinophils than the normal eosinophils and rhSP-D induced a significant increase in uptake of apoptotic eosinophils by J774A.1 macrophage cells. The study suggests that rhSP-D mediated preferential increase of apoptosis of primed eosinophils while not affecting the normal eosinophils and increased phagocytosis of apoptotic eosinophils may be important mechanisms of rhSP-D and plausibly SP-D-mediated resolution of allergic eosinophilic inflammation in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.