Opportunistic bacterial infections amongst HIV-infected individuals contribute significantly to HIVassociated mortality. The role of HIV-mediated modulation of innate mechanisms like autophagy in promoting opportunistic infections, however, remains obscure. Here we show, HIV reactivation in or infection of macrophages inhibits autophagy and helps the survival of pathogenic Mycobacterium tuberculosis (Mtb) and nonpathogenic non-tuberculous mycobacterial strains (NTMs). The HIVmediated impairment of xenophagy flux facilitated bacterial survival. Activation of autophagy by trehalose could induce xenophagy flux and kill intracellular Mtb or NTMs either during single or coinfections. Trehalose, we delineate, activates PIKFYVE leading to TFEB nuclear translocation in MCOLN1dependent manner to induce autophagy. Remarkably, trehalose significantly reduced HIV-p24 levels in ex-vivo-infected PBMCs or PBMCs from treatment-naive HIV patients and also controlled mycobacterial survival within Mtb-infected animals. To conclude, we report leveraging of HIV-mediated perturbed host innate-immunity by opportunistic bacterial pathogens and show an attractive therapeutic strategy for HIV and associated co-morbidities.
Anti-tuberculosis (TB) drugs, while being highly potent in vitro, require prolonged treatment to control Mycobacterium tuberculosis (Mtb) infections in vivo. We report here that mesenchymal stem cells (MSCs) shelter Mtb to help tolerate anti-TB drugs. MSCs readily take up Mtb and allow unabated mycobacterial growth despite having a functional innate pathway of phagosome maturation. Unlike macrophage-resident ones, MSC-resident Mtb tolerates anti-TB drugs remarkably well, a phenomenon requiring proteins ABCC1, ABCG2 and vacuolar-type H + ATPases. Additionally, the classic pro-inflammatory cytokines IFNγ and TNFα aid mycobacterial growth within MSCs. Mechanistically, evading drugs and inflammatory cytokines by MSC-resident Mtb is dependent on elevated PGE2 signaling, which we verify in vivo analyzing sorted CD45 − Sca1 + CD73 +-MSCs from lungs of infected mice. Moreover, MSCs are observed in and around human tuberculosis granulomas, harboring Mtb bacilli. We therefore propose, targeting the unique immune-privileged niche, provided by MSCs to Mtb, can have a major impact on tuberculosis prevention and cure.
presence of MSCs co-inhabiting with Mtb. Together the results show targeting the 42"immune-privileged niche, provided by MSCs to Mtb, can revolutionize tuberculosis 43" prevention and cure.
44"and * at P<0.05. 645"
IntroductionDiabetes is a potent risk factor for the activation of latent tuberculosis and worsens the tuberculosis (TB) treatment outcome. The major reason for mortality and morbidity in diabetic patients is due to their increased susceptibility to TB. Thus, the study was conducted to understand the crosstalk between M. tuberculosis and its host upon latent tuberculosis infection and under hyperglycemic conditions or diabetes.MethodsAn animal model was employed to study the relationship between latent tuberculosis and diabetes. BCG immunization was done in mice before infection with M. tuberculosis, and latency was confirmed by bacillary load, histopathological changes in the lungs and gene expression of hspX, tgs1, tgs3 and tgs5. Diabetes was then induced by a single high dose of streptozotocin (150 mg/kg body weight). Host factors, like various cytokines and MMPs (Matrix metalloproteinases), which play an important role in the containment of mycobacterial infection were studied in vivo and in vitro.ResultsA murine model of latent TB was developed, which was confirmed by CFU counts (<104 in the lungs and spleen) and granuloma formation in lungs in the latent TB group. Also, the gene expression of hspX, tgs1, and tgs5 was upregulated, and after diabetes induction, blood glucose levels were >200 mg/dl. An in vitro study employing a THP-1 macrophage model of latent and active tuberculosis under normal and high glucose conditions showed that dormant bacilli were better contained in the presence of 5.5 mM glucose concentration as compared with active bacilli. However, the killing and restriction efficiency of macrophages decreased, and CFU counts increased significantly with an increase in glucose concentration.DiscussionThe decreased levels of MCP-1, decreased expression of mmp-9, and increased expression of mmp-1 in the latent group at high glucose concentrations could explain the failure of granuloma formation at high glucose conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.