Pearl millet is a climate resilient crop and one of the most widely grown millets worldwide. Heterotic hybrid development is one of the principal breeding objectives in pearl millet. In a maiden attempt to identify heterotic groups for grain yield, a total of 343 hybrid parental [maintainer (B-) and restorer (R-)] lines were genotyped with 88 polymorphic SSR markers. The SSRs generated a total of 532 alleles with a mean value of 6.05 alleles per locus, mean gene diversity of 0.55, and an average PIC of 0.50. Out of 532 alleles, 443 (83.27%) alleles were contributed by B-lines with a mean of 5.03 alleles per locus. R-lines contributed 476 alleles (89.47%) with a mean of 5.41, while 441 (82.89%) alleles were shared commonly between B- and R-lines. The gene diversity was higher among R-lines (0.55) compared to B-lines (0.49). The unweighted neighbor-joining tree based on simple matching dissimilarity matrix obtained from SSR data clearly differentiated B- lines into 10 sub-clusters (B1 through B10), and R- lines into 11 sub-clusters (R1 through R11). A total of 99 hybrids (generated by crossing representative 9 B- and 11 R- lines) along with checks were evaluated in the hybrid trial. The 20 parents were evaluated in the line trial. Both the trials were evaluated in three environments. Based on per se performance, high sca effects and standard heterosis, F1s generated from crosses between representatives of groups B10R5, B3R5, B3R6, B4UD, B5R11, B2R4, and B9R9 had high specific combining ability for grain yield compared to rest of the crosses. These groups may represent putative heterotic gene pools in pearl millet.
To combat the dreaded diseases in rice like bacterial blight and blast, host plant resistance has been advocated as a sustainable method. Through the present study, we have successfully incorporated three major bacterial blight (BB) resistance genes viz., Xa21, xa13 and xa5 into NLR3449, a high yielding, blast resistant, fine-grain type popular rice variety through marker-assisted backcross breeding. Foreground selection was carried out using PCR based, gene-specific markers viz., pTA248 (Xa21), xa13prom (xa13) and xa5FM (xa5) at each generation of backcrossing, while 127 polymorphic SSR markers spanning on 12 chromosomes were used for background selection and backcrossing was limited to two rounds. At BC2F1 generation, a single plant (NLR-87-10) with 89.9% recovery and possessing all the three bacterial blight resistance genes was forwarded to BC2F2 generation. A solitary BC2F2 plant viz., NLR-87-10-106 possessing all the three resistance genes and > 90% genome recovery was identified and advanced through selfing till BC2F4 generation by adopting pedigree method. Three best lines at BC2F4 lines, possessing high level of resistance against bacterial blight and blast and equivalent or superior to NLR 34449 in terms of yield, grain quality and agro-morphological traits have been identified and advanced for multi-location trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.