In this study, the iron-pillared clay nanocatalyst (ICN) was employed as a nanocatalyst for decolorization of methylene blue (MB) in aqueous solutions without hydrogen peroxide. The changes in clay structure after the incorporation of iron-oxide particles was studied with the help of XRD analytical data. The SEM micrographs showed higher heterogeneous structure of ICN compared to pristine clay and the specific surface area of ICN (82.54 m2/g) is considerably higher than the unmodified clay (63.41 m2/g). Further, the EDX analytical data indicate the successful incorporation of iron-oxide into bentonite clay. Batch experiments showed that ICN could degrade MB within pH 3.0 to 11.0 and it is efficient even at higher concentrations. The degradation is very fast and more than 90% is removed within 30 mins. A small amount of ICN is effective for degradation of MB and the reusability test showed that ICN can be reuse for several times for the degradation of MB in aqueous solutions. The effect of scavengers studies indicate that the ·OH radicals generated from the ICN are responsible in the degradation of MB. This study indicates that ICN must be low cost and environmentally friendly active nanocatalyst for degradation of MB present in aquatic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.