A hierarchical program is one with multiple procedures but no loops or recursion. This paper studies the problem of deciding reachability queries in hierarchical programs where individual statements can be encoded in a decidable logic (say in SMT). This problem is fundamental to verification and most directly applicable to doing bounded reachability in programs, i.e., reachability under a bound on the number of loop iterations and recursive calls. The usual method of deciding reachability in hierarchical programs is to first inline all procedures and then do reachability on the resulting single-procedure program. Such inlining unfolds the call graph of the program to a tree and may lead to an exponential increase in the size of the program. We design and evaluate a method called DAG inlining that unfolds the call graph to a directed acyclic graph (DAG) instead of a tree by sharing the bodies of procedures at certain points during inlining. DAG inlining can produce much more compact representations than tree inlining. Empirically, we show that it leads to significant improvements in the running time of a state-of-the-art verifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.