This study shows how to address the problem of trait-unrelated response styles (RS) in rating scales using multidimensional item response theory. The aim is to test and correct data for RS in order to provide fair assessments of personality. Expanding on an approach presented by Böckenholt (2012), observed rating data are decomposed into multiple response processes based on a multinomial processing tree. The data come from a questionnaire consisting of 50 items of the International Personality Item Pool measuring the Big Five dimensions administered to 2,026 U.S. students with a 5-point rating scale. It is shown that this approach can be used to test if RS exist in the data and that RS can be differentiated from trait-related responses. Although the extreme RS appear to be unidimensional after exclusion of only 1 item, a unidimensional measure for the midpoint RS is obtained only after exclusion of 10 items. Both RS measurements show high cross-scale correlations and item response theory-based (marginal) reliabilities. Cultural differences could be found in giving extreme responses. Moreover, it is shown how to score rating data to correct for RS after being proved to exist in the data.
Careless and insufficient effort responding (C/IER) can pose a major threat to data quality and, as such, to validity of inferences drawn from questionnaire data. A rich body of methods aiming at its detection has been developed. Most of these methods can detect only specific types of C/IER patterns. However, typically different types of C/IER patterns occur within one data set and need to be accounted for. We present a model-based approach for detecting manifold manifestations of C/IER at once. This is achieved by leveraging response time (RT) information available from computer-administered questionnaires and integrating theoretical considerations on C/IER with recent psychometric modeling approaches. The approach a) takes the specifics of attentive response behavior on questionnaires into account by incorporating the distance–difficulty hypothesis, b) allows for attentiveness to vary on the screen-by-respondent level, c) allows for respondents with different trait and speed levels to differ in their attentiveness, and d) at once deals with various response patterns arising from C/IER. The approach makes use of item-level RTs. An adapted version for aggregated RTs is presented that supports screening for C/IER behavior on the respondent level. Parameter recovery is investigated in a simulation study. The approach is illustrated in an empirical example, comparing different RT measures and contrasting the proposed model-based procedure against indicator-based multiple-hurdle approaches.
A multistage adaptive testing (MST) design was implemented for the Programme for the International Assessment of Adult Competencies (PIAAC) starting in 2012 for about 40 countries and has been implemented for the 2018 cycle of the Programme for International Student Assessment (PISA) for more than 80 countries. Using examples from PISA and PIAAC, this article addresses the advantages and considerations of an MST design in the context of international large‐scale assessments (ILSAs). It illustrates and discusses the unique features of the implemented designs in PISA and PIAAC and the expected gains in test efficiency and accuracy, as well as limitations and challenges of MST designs for cross‐country surveys. Practical aspects and insights into utilizing MST to measure complex constructs in cross‐cultural surveys are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.