Since the first medical student ultrasound electives became available more than a decade ago, ultrasound in undergraduate medical education has gained increasing popularity. More than a dozen medical schools have fully integrated ultrasound education in their curricula, with several dozen more institutions planning to follow suit. Starting in June 2012, a working group of emergency ultrasound faculty at the California medical schools began to meet to discuss barriers as well as innovative approaches to implementing ultrasound education in undergraduate medical education. It became clear that an ongoing collaborative could be formed to discuss barriers, exchange ideas, and lend support for this initiative. The group, termed Ultrasound in Medical Education, California (UMeCali), was formed with 2 main goals: to exchange ideas and resources in facilitating ultrasound education and to develop a white paper to discuss our experiences. Five common themes integral to successful ultrasound education in undergraduate medical education are discussed in this article: (1) initiating an ultrasound education program; (2) the role of medical student involvement; (3) integration of ultrasound in the preclinical years; (4) developing longitudinal ultrasound education; and (5) addressing competency.
Objectives: Focused assessment of sonography in trauma (FAST) has been shown useful to detect clinically significant hemoperitoneum in adults, but not in children. The objectives were to determine test characteristics for clinically important intraperitoneal free fluid (FF) in pediatric blunt abdominal trauma (BAT) using computed tomography (CT) or surgery as criterion reference and, second, to determine the test characteristics of FAST to detect any amount of intraperitoneal FF as detected by CT. Results: The study enrolled 431 patients, excluded 74, and analyzed data on 357. For the first objective, 23 patients had significant hemoperitoneum (22 on CT and one at surgery). Twelve of the 23 had true-positive FAST (sensitivity = 52%; 95% confidence interval [CI] = 31% to 73%). FAST was true negative in 321 of 334 (specificity = 96%; 95% CI = 93% to 98%). Twelve of 25 patients with positive FAST had significant FF on CT (positive predictive value [PPV] = 48%; 95% CI = 28% to 69%). Of 332 patients with negative FAST, 321 had no significant fluid on CT (negative predictive value [NPV] = 97%; 95% CI = 94% to 98%). Positive likelihood ratio (LR) for FF was 13.4 (95% CI = 6.9 to 26.0) while the negative LR was 0.50 (95% CI = 0.32 to 0.76). Accuracy was 93% (333 of 357, 95% CI = 90% to 96%). For the second objective, test characteristics were as follows: sensitivity = 20% (95% CI = 13% to 30%), specificity = 98% (95% CI = 95% to 99%), PPV = 76% (95% CI = 54% to 90%), NPV = 78% (95% CI = 73% to 82%), positive LR = 9.0 (95% CI = 3.7 to 21.8), negative LR = 0.81 (95% CI = 0.7 to 0.9), and accuracy = 78% (277 of 357, 95% CI = 73% to 82%).
Conclusion:In this population of children with BAT, FAST has a low sensitivity for clinically important FF but has high specificity. A positive FAST suggests hemoperitoneum and abdominal injury, while a negative FAST aids little in decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.