The present study was designed to search for metabolic biomarkers and their correlation with serum zinc in Crohn's disease patients. Crohn's disease (CD) is a form of inflammatory bowel disease that may affect any part of the gastrointestinal tract and can be difficult to diagnose using the clinical tests. Thus, introduction of a novel diagnostic method would be a major step towards CD treatment. Proton nuclear magnetic resonance spectroscopy ((1)H NMR) was employed for metabolic profiling to find out which metabolites in the serum have meaningful significance in the diagnosis of CD. CD and healthy subjects were correctly classified using random forest methodology. The classification model for the external test set showed a 94% correct classification of CD and healthy subjects. The present study suggests Valine and Isoleucine as differentiating metabolites for CD diagnosis. These metabolites can be used for screening of risky samples at the early stages of CD diagnoses. Moreover, a robust random forest regression model with good prediction outcomes was developed for correlating serum zinc level and metabolite concentrations. The regression model showed the correlation (R(2)) and root mean square error values of 0.83 and 6.44, respectively. This model suggests valuable clues for understanding the mechanism of zinc deficiency in CD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.