The evaporation of a nanocolloidal sessile droplet exhibits preferential particle assembly, nanoporous shell formation and buckling to form cavities with unique morphological features. Here, we have established many universal trends that explain the buckling dynamics under one umbrella irrespective of hydrophobicity, evaporation mode and particle loading. We provide a regime map explaining the droplet morphology and buckling characteristics for droplet evaporation on various substrates. Specifically, we find that the final droplet volume and the radius of curvature at the buckling onset are universal functions of particle concentration. Furthermore, we establish that post-buckling cavity growth is evaporation driven regardless of the substrate.
We provide a comprehensive physical description of the vaporization, self-assembly, agglomeration, and buckling kinetics of sessile nanofluid droplets pinned on a hydrophobic substrate. We have deciphered five distinct regimes of the droplet life cycle. Regimes I-III consists of evaporation-induced preferential agglomeration that leads to the formation of a unique dome-shaped inhomogeneous shell with a stratified varying-density liquid core. Regime IV involves capillary-pressure-initiated shell buckling and stress-induced shell rupture. Regime V marks rupture-induced cavity inception and growth. We demonstrate through scaling arguments that the growth of the cavity (which controls the final morphology or structure) can be described by a universal function.
Particle-laden droplet-based systems ranging from micro- to nanoscale have become increasingly popular in applications such as inkjet printing, pharmaceutics, nanoelectronics, and surface patterning. All such applications involve multidroplet arrays in which vapor-mediated interactions can significantly affect the evaporation dynamics and morphological topology of precipitates. A fundamental study was conducted on nanocolloidal paired droplets (droplets kept adjacent to each other as in an array) to understand the physics related to the evaporation dynamics, internal flow pattern, particle transport, and nanoparticle self-assembly, primarily using optical diagnostic techniques [such as micro-particle image velocimetry (μPIV)]. Paired droplets exhibit contact angle asymmetry, inhomogeneous contact line slip, and unique single-toroid microscale flow, which are unobserved in single droplets. Furthermore, nanoparticles self-assemble (at the nanoscale) to form a unique variable-thickness (microscale) tilted dome-shaped structure that eventually ruptures at an angle because of evaporation at a nanopore scale to form cavities (miniscale). The geometry and morphology of the dome can be further fine-tuned at a macro- to microscale by varying the initial particle concentration and substrate properties. This concept has been extended to a linear array of droplets to showcase how to custom design two-dimensional drop arrangements to create controlled surface patterns at multiple length scales.
Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.
We demonstrate a seven-core erbium-doped fiber amplifier in which all the cores were pumped simultaneously by a side-coupled tapered multimode fiber. The amplifier has multicore (MC) MC inputs and MC outputs, which can be readily spliced to MC transmission fiber for amplifying space division multiplexed signals. Gain over 25 dB was obtained in each of the cores over a 40-nm bandwidth covering the C-band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.