Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V-or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.
The firing pattern of blastholes influences the geometric aspects of a blast design in terms of change in blasting burden and spacing. This in turn changes the effective stiffness of a blasthole and confinement of the explosive and aids in better fragmentation. However, during the blasting, the fragments tend to collide and further fragment the rock. In comparison with other patterns, the V-type firing pattern increases the chances of collision between the fragments during flight. The process is scantly documented and accordingly field experiments were conducted using three firing patterns, viz., line, diagonal, and V-type, in a mine with minor variation in rock factor and minor to moderate changes in blast design variables. Sixteen blast design variables such as burden, spacing, charge per hole, in-hole charge density, etc. along with firing pattern were considered for the analysis and fragmentation modeled with the help of surface response analysis and artificial neural networks. The analysis revealed that there is a significant influence of firing patterns on fragmentation. The V-type pattern showed significant reduction in fragment sizes that can be ascribed to in-flight collision processes. A surface response model was developed using advanced ANOVA and resulted in an adjusted R2 and RMSE of 0.89, 0.025, respectively. Further, modeling with ANN was attempted that showed better results than ANOVA with R2 and RMSE of 0.96 and 0.040 in training, and 0.884 and 0.049 in validation tests. Since, diagonal and V-type patterns have similar design parameters, the reduction in fragment size in the former pattern can be ascribed to the collision of rock fragments during their flight in blasting.
Firing sequence of blastholes in blasting is an inherent part of the blast design for various reasons that range from the spatial requirements to the control of throw during blasting in surface mines. Despite several such patterns in vogue, role of firing sequences in defining the size of fragmented block sizes is not properly understood. The V-type firing pattern is believed to improve blast fragmentation because of the collision of moving fragments during the blasting process, thus resulting in further breakage. There are practically negligible studies that substantiate this assertion. The role of V-type firing pattern has been explored in this paper with simple logic and some field data. It is observed that the V-type firing pattern produces better fragmentation and controls the throw during blasting. A comparison with diagonal firing pattern, in controlled experiments, makes it evident that V-type firing pattern can be used to advantage for fragmentation improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.