Estimating cost is a very wearisome activity in all aspect. A person with broad scope and good thinking for the future makes more precise decisions. It helps in governing and planning the software risks which are admirably correct and precise. In 1960 regression analysis and mathematical formulae were practiced to determine cost. We need to think more than simply putting numbers into a formula and accept the results to attaining the accuracy of software cost estimation. The changing methods of estimating software cost have made the researchers to think diversely. Barry Bohem birthed COCOMO model for software cost estimation in 1981 which is considered to be more efficient as compared to previous models. Thereafter number of researchers has been trying to improve the efficiency by keeping the base of COCOMO model. The paper drafts a novel variable reduction technique called feed-forward neural network with PCA to measure the estimation model accuracy. This is based on a COCOMO sample data set which collects and maintains a large software project data repository. PCA is a kind of classification method which can reduces number of factors into a few absolute factors.
The capacity of machine objects to communicate autonomously is seen as the future of the Internet of Things (IoT), but machine-to-machine communication (M2M) is also gaining traction. In everyday life, security, transportation, industry, and healthcare all employ this paradigm. Smart devices have the ability to detect, handle, store, and analyze data, resulting in major network issues such as security and reliability. There are numerous vulnerabilities linked with IoT devices, according to security experts. Prior to performing any activities, it is necessary to identify and classify the device. Device identification and classification in M2M for secure telerobotic surgery are presented in this study. Telerobotics is an important aspect of the telemedicine industry. The major purpose is to provide remote medical care, which eliminates the requirement for both doctors and patients to be in the same location. This paper aims to propose a security and energy-efficient protocol for telerobotic surgeries, which is the primary concern at present. For secure telerobotic surgery, the author presents an Efficient Device type Detection and Classification (EDDC) protocol for device identification and classification in M2M communication. The periodic trust score is calculated using three factors from each sensor node. It demonstrates that the EDDC protocol is more effective and secure in detecting and categorizing rogue devices.
The Adoption of digital content by the institutional members & students have seen rapid growth in recent years. The students could access the content across various devices, platform & applications, which has a direct implication on the physical presence of the student. The institutions follow old & very traditional base approach like a manual record of attendance to track the company of students which consumes a lot of time & efforts from the staff members. The study looks at the various technologies available in the market & present the implementation of the best possible solution. The latest use of technology of Facial Recognition with a combination of RFID will enhance the tracking process & also provide valuable insight into student behaviour. The data collected by the system can further utilize to improve the efficiency & effectiveness of student behaviour patterns & predict the learning trend, which will help the institutions to make the correct decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.