Bioanalytical method validation employed for the quantitative determination of drugs and their metabolites in biological fluids plays a significant role in the evaluation and interpretation of bioavailability, bioequivalence, pharmacokinetic, and toxicokinetic study data [2]. These studies generally support regulatory filings [3]. The quality of these studies is directly related to the quality of the underlying bioanalytical data. It is therefore important that guiding principles for the validation of these analytical methods be established and disseminated to the pharmaceutical community.
To design new chemotypes with enhanced potencies against the HIV integrase enzyme, 3D pharmacophore models were generated and QSAR study was carried out on 44 novel indole b-diketo acid derivatives and coumarin-based Inhibitors. A five-point pharmacophore with two hydrogen bond acceptors (A) and three aromatic rings (R) as pharmacophore features was developed by PHASE module of Schrodinger suite. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of R 2 = 0.81 for training set compounds. The model generated showed excellent predictive power, with a correlation coefficient of Q 2 = 0.69 for a randomly chosen test set of eight compounds. The 3D-QSAR plots illustrated insights into the structure activity relationship of these compounds which may helps in the design and development of novel integrase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.