The 2019 coronavirus disease presents with a large variety of clinical manifestations ranging from asymptomatic carrier state to severe respiratory distress, multiple organ dysfunction and death. While it was initially considered primarily a respiratory illness, rapidly accumulating data suggests that COVID-19 results in a unique, profoundly prothrombotic milieu leading to both arterial and venous thrombosis. Consistently, elevated D-dimer level has emerged as an independent risk factor for poor outcomes, including death. Several other laboratory markers and blood counts have also been associated with poor prognosis, possibly due to their connection to thrombosis. At present, the pathophysiology underlying the hypercoagulable state is poorly understood. However, a growing body of data suggests that the initial events occur in the lung. A severe inflammatory response, originating in the alveoli, triggers a dysfunctional cascade of inflammatory thrombosis in the pulmonary vasculature, leading to a state of local coagulopathy. This is followed, in patients with more severe disease, by a generalized hypercoagulable state that results in macro-and microvascular thrombosis. Of concern, is the observation that anticoagulation may be inadequate in many circumstances, highlighting the need for alternative or additional therapies. Numerous ongoing studies investigating the pathophysiology of the COVID-19 associated coagulopathy may provide mechanistic insights that can direct appropriate interventional strategies.
The endothelium regulates vascular homeostasis, and endothelial dysfunction is a proximate event in the pathogenesis of atherothrombosis. Stimulation of the endothelium with proinflammatory cytokines or exposure to hemodynamic-induced disturbed flow leads to a proadhesive and prothrombotic phenotype that promotes atherothrombosis. In contrast, exposure to arterial laminar flow induces a gene program that confers a largely antiadhesive, antithrombotic effect. The molecular basis for this differential effect on endothelial function remains poorly understood. While recent insights implicate Kruppel-like factors (KLFs) as important regulators of vascular homeostasis, the in vivo role of these factors in endothelial biology remains unproven. Here, we show that endothelial KLF4 is an essential determinant of atherogenesis and thrombosis. Using in vivo EC-specific KLF4 overexpression and knockdown murine models, we found that KLF4 induced an antiadhesive, antithrombotic state. Mechanistically, we demonstrated that KLF4 differentially regulated pertinent endothelial targets via competition for the coactivator p300. These observations provide cogent evidence implicating endothelial KLFs as essential in vivo regulators of vascular function in the adult animal. IntroductionThrough the elaboration of numerous biological substances, ECs actively regulate fundamental physiological processes, such as regulation of blood coagulation, homing of immune cells, and barrier function. Studies over the past several decades have also identified key physiologic and pathologic phenotypic modulators of ECs. For example, stimulation of the endothelium with proinflammatory cytokines renders the endothelium dysfunctional, inducing a proadhesive and prothrombotic phenotype. In contrast, laminar flow induces critical genes that confer potent antithrombotic, antiadhesive, and antiinflammatory properties. The significance of fluid shear stress is evidenced by the observation that segments of the arterial tree exposed to laminar flow (e.g., straight regions of the vasculature) are less prone to the development of atherosclerotic lesions than are regions exposed to nonlaminar/disturbed flow (e.g., branch points). These observations have led to the current view that the balance of biochemical and biomechanical stimuli is the central determinant of vascular function under physiologic and pathologic conditions. Given the importance of the endothelium in vessel homeostasis, there is great interest in identifying molecular pathways that mediate the effects of both biochemical and biomechanical stimuli. Prior studies from our group and others have identified 2 members of the Kruppel-like factor (KLF) family of transcription factors, KLF2 and KLF4, as being of particular interest. Both KLF2 and KLF4 are induced by laminar flow and in in vitro stud-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.