Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phytomediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.
Green synthesis of silver nanoparticles was carried out using the aqueous extract of Alternanthera sessilis under various experimental conditions. The aqueous extract of Alternanthera sessilis showed significant potential for the quick reduction of silver ions. The synthesized silver nanoparticles were characterized with UV-visible absorption spectrophotometer, XRD, SEM, and FTIR analysis. The average crystallite size as calculated from x-ray diffraction studies and SEM analysis was found to be less than 100 nm. The cytotoxic activity of synthesized nanosilver was carried out against prostate cancer cells (PC3) by MTT assay and found to show significant activity. The present work of biosynthesis of silver nanoparticles using Alternanthera sessilis appears to be cost effective, eco-friendly, and an alternative to conventional method of synthesis.
is a commonly found pathogen that can cause food-spoilage and life threatening infections. However, the potential molecular effects of natural active thymol molecules and chitosan silver nanoparticles (C@AgNPs) in bacteria remain unclear. This gap in the literature has prompted us to study the effects of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) against biofilm associated proteins in methicillin-resistant (Bap-MRSA) 090 and also their toxicity, anti-cancer activity, and validation of their molecular docking. The results showed excellent antibacterial activity of T-C@AgNPs against Bap-MRSA 090, having a minimum inhibitory concentration of 100 μg mL and a 10.08 ± 0.06 mm zone of inhibition (ZOI). The cyclic voltammogram (CV) analysis clearly showed pore forming of T-C@AgNPs at 300 μg mL concentration, and evidence of the interruption of the electron transport chain was clearly seen. The 200 μg mL concentration exhibited a 52.60 ± 0.25% anti-biofilm property by T-C@AgNPs against Bap-MRSA 090. The T-C@AgNPs showed no toxicity to peripheral blood mononuclear cells (PBMC) (IC = 221 ± 0.71 μg mL) compared to the control, and anti-cancer activity against human triple negative breast cancer cell line (MDA-MB-231) (IC 110 ± 1.0 μg mL) compared to the standard drug Doxorubicin (IC = 19 ± 1.0). The excellent properties of T-C@AgNPs were validated by molecular docking studies and showed best match scoring to target proteins compared to standards. These excellent properties of T-C@AgNPs highlight for the first time its pharmacology and potential in medicinal drug development applications for future research.
The RGO-Y2O3 and RGO-Y2O3: Cr3+ (5 mol %) nanocomposite (NC) synthesized by hydrothermal technique. The structure and morphology of the synthesized NCs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Y2O3:Cr3+ displays spherical-shaped particles. Conversely, the surface of the RGO displays a wrinkly texture connecting with the existence of flexible and ultrathin graphene sheets. The photoluminescence (PL) emission spectra showed series of sharp peaks at 490, 591, and 687 nm which corresponding to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, and 4F9/2 → 6H11/2 transitions and lies in the blue, orange, and red region. The prepared NCs were used for the preparation of modified carbon paste electrodes (MCPE) in the electrochemical detection of dopamine (DA) at pH 7.4. Both modified electrodes provide a good current response towards voltammetric detection of DA. Doping is an effective method to improve the conductivity of Y2O3:Cr3+ and developed a method for the sensor used in analytical applications.
Silver nanoparticles prepared through a simplistic method using the aqueous extract ofAmaranthus dubiuswere fabricated on perspiration pads and cotton cloth samples to obtain antibacterial textile materials by two different fabrication methods. The antibacterial activity was investigated against the bacteriaCorynebacteriumwhich is commonly present in sweat. Silver nanoparticles that serve as antibacterial agents, against pathogenic bacteria, have gained increased applications in medical devices, textile fabrics, and food industry and hence the result of this study would be a welcomed option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.