We give a new definition of fuzzy fractional derivative called fuzzy conformable fractional derivative. Using this definition, we prove some results and we introduce new definition of generalized fuzzy conformable fractional derivative.
The aim of the present study is to analyze and find a solution for the model of nonlinear ordinary differential equations (ODEs) describing the so-called coronavirus (COVID-19), a deadly and most parlous virus. The mathematical model based on four nonlinear ODEs is presented, and the corresponding numerical results are studied by applying the variational iteration method (VIM) and differential transformation method (DTM).
In this paper, we study the fuzzy Laplace transforms introduced by the authors in (Allahviranloo and Ahmadi in Soft Comput. 14:235-243, 2010) to solve only first-order fuzzy linear differential equations. We extend and use this method to solve second-order fuzzy linear differential equations under generalized Hukuhara differentiability.
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order
q
∈
0,1
.
In this paper, the fuzzy fractional evolution equations of order q (FFEE) with fuzzy Caputo fractional derivative are introduced. We study the existence and uniqueness of mild solutions for FFEE under some conditions. Also, we generalize the definition of the fuzzy fractional integral and derivative order q. The fuzzy Laplace transform is presented and proved. The solvability of the problem (FFEE) and the properties of the fuzzy solution operator and its generator are investigated and developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.