A novel perfluorinated corrole, 2,3,7,8,12,13,17,18-octafluoro-5,10,15-tris(pentafluorophenyl)corrole, and its manganese(III) and oxomanganese(V) derivatives have been synthesized. The perfluorinated manganese corrolate exhibited excellent reactivity and stability in the catalytic oxidation of alkenes with iodosylbenzene.
Cooking fumes are an important carbonyl emission source, especially in a highly urbanized city, such as Hong Kong. Cooking exhaust from 15 commercial kitchens of a variety of cooking styles was sampled and analyzed for a suite of 13 carbonyl compounds. Carbonyl compositions were varied among the different cooking styles. Formaldehyde was generally the most abundant carbonyl, and its contribution to the total carbonyl amount on a molar basis ranged from 12 to 60%. Acrolein was also found to be an abundant carbonyl in the cooking exhaust. The highest contribution by acrolein to the total carbonyls was found to be 30% in the exhaust of a western-style steak restaurant. Long-chain saturated carbonyls, that is, heptanal, octanal, and nonanal, accounted for a significant fraction (Ͼ40%) of the total carbonyls in kitchens that always used heated cooking oils. Two dicarbonyls, glyoxal and methylglyoxal, had a various presence in the cooking emissions, ranging from negligible to 10%. The presence of benzaldehyde and tolualdehyde was mostly negligible in the sampled kitchen exhaust. Annual emission rates of both individual carbonyls and total carbonyls were estimated for various types of commercial kitchens. Local-style fast-food shops contributed the highest total carbonyl emissions per year mainly because of the large number of this kind of restaurant in Hong Kong. The citywide annual emission rates of the three most toxic carbonyls, formaldehyde, acetaldehyde, and acrolein, were estimated assuming that the limited number of sampled restaurants were representative of the average restaurants. Such estimates of carbonyl emission rates were comparable to the estimated carbonyl emissions from vehicular sources, suggesting the importance of commercial cooking as a source for carbonyls in Hong Kong.
Exposure to cooking fumes may be responsible for respiratory health effects. However, the linkage between such exposures and these effects cannot be established without knowing the size distribution of the aerosols emitted from cooking activities. This study examined the size distribution of the aerosols generated by commercial cooking processes. It was found that the aerosol size distributions were lognormal. Several theoretical models can explain the lognormal characteristic of aerosols from cooking processes and the simplest one is a bounded multiplicative process that represents the growth (or shrinkage) of aerosols in a random manner. Our results showed that by defining the mode diameter (geometric mean diameter) and the dimensionless geometric standard deviation one could describe the size distribution of cooking fumes in general. This characterization model can be applied to cooking fumes from indoor as well as outdoor cooking processes. The results of our measurement also showed that the mode diameter of aerosols increased when cooking temperature increased. The normalized number concentration of sub-micrometer aerosols increased rapidly when cooking temperature increased especially in the size range between 0.1 and 1.0 mm, known as the accumulation mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.