In the present study, the effects of chronic hypoxia on the expression and localization of angiotensin II (Ang II) receptors are investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by immunohistochemistry. The effect of chronic hypoxia on the carotid body chemoreceptor activity was also examined by in vitro electrophysiology. Results from RT-PCR revealed that chronic hypoxia exhibited differential effects on the gene expression of Ang II receptors, namely AT 1 and AT 2 , in the carotid body. The mRNA expression for subtypes of the AT 1 receptor, AT 1a and AT 1b , was significantly increased in the carotid body with chronic hypoxia. To further investigate the localization of the AT 1 receptor, an immunohistochemical study was performed. The results showed that AT 1 receptor immunoreactivity was found in lobules of glomus cells in the carotid body and the immunoreactivity was more intense in chronic hypoxia than in normoxic controls. In vitro electrophysiological studies consistently demonstrated that chronic hypoxia enhanced the AT 1 receptor-mediated excitation of carotid body chemoreceptor activity. These data suggest that chronic hypoxia upregulates the transcriptional and post-transcriptional expression of AT 1 receptors in the rat carotid body. The upregulation of the expression also enhances AT 1 receptor-mediated excitation of the carotid body afferent activity. This might be important in the modulation of cardiorespiratory functions as well as fluid and electrolyte homeostasis during chronic hypoxia.
PurposeTo compare the image quality of the low-dose to the standard-dose protocol of MDCT scanning of the paranasal sinuses, based on subjective assessment and determine the radiation doses to the eyes and thyroid gland and dose reduction between these two protocols.Materials and Methods31 adult patients were scanned. Prior to scanning, thermoluminescent dosimeters (TLDs) were placed at 4 sites: outer canthus of right eye, outer canthus of left eye, inner canthus and anterior neck (thyroid gland). Every patient was scanned twice using the standard-dose protocol (100mAs) followed by the low-dose protocol (40mAs). The images were reviewed by 3 radiologists. Wilcoxon test was used as the test of significance for the image quality assessments. The paired sample t-test was used as the test of significance for the analysis of the radiation doses measured by the TLDs.ResultsOf the 30 patients selected for analysis, this study showed no significant difference in the scores for the diagnostic image quality and the anatomical structures assessments between the two protocols. The average calculated mean entrance surface doses and standard deviation for the standard-dose and low-dose protocols were 12.40±1.39 mGy and 5.53±0.82 mGy respectively to the lens and 1.03±0.55 mGy and 0.63±0.53 mGy respectively to the thyroid gland.ConclusionThe reduction of mAs from 100 to 40 resulted in a significant reduction of the radiation doses to the lens and thyroid gland by 55.4% and 38.8% respectively without causing any significant effect to the diagnostic image quality and assessment of the anatomical structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.