Tetanus toxin inhibits neurotransmitter release by selectively blocking fusion of synaptic vesicles. Recently tetanus toxin was shown to proteolytically degrade synaptobrevin II (also named VAMP-2), a synaptic vesicle-specific protein, in vitro and in nerve terminals. As targets of tetanus toxin, synaptobrevins probably function in the exocytotic fusion of synaptic vesicles. Here we describe a new synaptobrevin homologue, cellubrevin, that is present in all cells and tissues tested and demonstrate that it is a membrane trafficking protein of a constitutively recycling pathway. Like synaptobrevin II, cellubrevin is proteolysed by tetanus toxin light chain in vitro and after transfection. Our results suggest that constitutive and regulated vesicular pathways use homologous proteins for membrane trafficking, probably for membrane fusion at the plasma membrane, indicating a greater mechanistic and evolutionary similarity between these pathways than previously thought.
The synaptic vesicle protein synaptobrevin (VAMP) has recently been implicated as one of the key proteins involved in exocytotic membrane fusion. It with similar efficiency, whereas the non-neuronal isoform cellubrevin displayed a lower affinity towards synaptophysin. Treatment with high NaCl concentrations resulted in a dissociation of the synaptobrevin-synaptophysin complex. In addition, the interaction of synaptobrevin with synaptophysin was irreversibly abolished by low amounts of SDS, while the interaction with syntaxin I was enhanced. We conclude that synaptophysin selectively interacts with synaptobrevin in a complex which excludes the t-SNAP receptors syntaxin I and SNAP-25, suggesting a role for synaptophysin in the control of exocytosis.
Abstract. Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion. According to the current concept, syntaxin 1 and SNAP-25 are members of larger protein families, collectively designated as target-SNAP receptors (t-SNAREs), whose specific localization to subcellular membranes define where transport vesicles bind and fuse. Here we demonstrate that major pools of syntaxin 1 and SNAP-25 recycle with SVs. Both proteins cofractionate with SVs and clathrin-coated vesicles upon subcellular fractionation. Using recombinant proteins as standards for quantitation, we found that syntaxin 1 and SNAP-25 each comprise ~3 % of the total protein in highly purified SVs. Thus, both proteins are significant components of SVs although less abundant than synaptobrevin (8.7 % of the total protein). Immunoisolation of vesicles using synaptophysin and syntaxin specific antibodies revealed that most SVs contain syntaxin 1. The widespread distribution of both syntaxin 1 and SNAP-25 on SVs was further confirmed by immunogold electron microscopy. Botulinum neurotoxin C1, a toxin that blocks exocytosis by proteolyzing syntaxin 1, preferentially cleaves vesicular syntaxin 1. We conclude that t-SNAREs participate in SV recycling in what may be functionally distinct forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.