Nursing home (NH) residents and staff have been severely affected by the COVID‐19 pandemic. The aim of this study was to examine the use of weekly saliva RT‐qPCR testing for SARS‐CoV‐2 detection among NH workers as a strategy to control disease transmission within NHs in Belgium. From 16 November to 27 December 2020, a voluntary and anonymous weekly screening was implemented in a cohort of 50,000 workers across 572 NHs in the Walloon region of Belgium to detect asymptomatic cases of SARS‐CoV‐2 via saliva RT‐qPCR testing and using the Diagenode saliva sample collection device. Positive workers were isolated to avoid subsequent infections in residents and other staff. RT‐qPCR testing was based on pooled saliva sampling techniques from three workers, followed by individual testing of each positive or inconclusive pool. The majority of NHs (85%) and 55% of their workers participated. Pooling did not affect sensitivity as it only induced a very decrease in sensitivity estimated as 0.33%. Significant decreases in the prevalence (34.4–13.4%) and incidence of NHs with either single (13.8–2%) or multiple positive workers (3.7–0%) were observed over time. In addition, deaths among NH residents and NH worker absences decreased significantly over time. Weekly saliva RT‐qPCR testing for SARS‐CoV‐2 demonstrated large‐scale feasibility and efficacy in disrupting the chain of transmission. Implementation of this testing strategy in NHs could also be extended to other settings with the aim to control viral transmission for maintaining essential activities.
Compared to other hospital units, the emergency department presents some distinguishing characteristics of its own. Emergency health-care delivery is a collaborative process involving the contribution of several individuals who accomplish their tasks while working autonomously under pressure and sometimes with limited resources. Effective computerization of the emergency department information system presents a real challenge due to the complexity of the scenario. Current computerized support suffers from several problems, including inadequate data models, clumsy user interfaces, and poor integration with other clinical information systems. To tackle such complexity, we propose an approach combining three points of view, namely the transactions (in and out of the department), the (mono and multi) user interfaces and data management. Unlike current systems, we pay particular attention to the user-friendliness and versatility of our system. This means that intuitive user interfaces have been conceived and specific software modeling methodologies have been applied to provide our system with the flexibility and adaptability necessary for the individual and group coordinated tasks. Our approach has been implemented by prototyping a web-based, multiplatform, multiuser, and versatile clinical information system built upon multitier software architecture, using the Java programming language.
Background Nursing home (NH) residents have been severely affected during the COVID-19 pandemic because of their age and underlying comorbidities. Infection and outbreaks in NHs are most likely triggered by infected workers. Screening for asymptomatic NH workers can prevent risky contact and viral transmission to the residents. This study examined the effect of the BNT162b2 mRNA COVID‑19 (Comirnaty®; BioNTech and Pfizer) vaccination on the saliva excretion of SARS-CoV-2 among NH workers, through weekly saliva RT-qPCR testing. Methods A 2-month cohort study was conducted among 99 NHs in the Walloon region (Belgium), at the start of February 2021. Three groups of workers, i.e., non-vaccinated (n = 1618), one-dosed vaccinated (n = 1454), and two-dosed vaccinated (n = 2379) of BNT162b2 mRNA COVID‑19 vaccine, were followed-up weekly. Their saliva samples were used to monitor the shedding of SARS-CoV-2. All positive samples were sequenced and genotyped to identify the circulating wild-type virus or variants of concern. Results The protection fraction against the excretion of the SARS-CoV-2 in the saliva samples of the workers after the second dose is estimated at 0.90 (95% CI: 0.18; 0.99) at 1 week and 0.83 (95% CI: 0.54; 0.95) at 8 weeks. We observe more circulating SARS-CoV-2 and a greater variability of viral loads in the unvaccinated group compared to those of the vaccinated group. Conclusions This field cohort study advances our knowledge of the efficacy of the mRNA BNT162b2 COVID-19 vaccine on the viral shedding in the saliva specimens of vaccinated NH workers, contributing to better decision-making in public health interventions and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.