Abstract-The relationship between the reflection phase curve and the dispersion curve of a H-shaped slot fractal uniplanar compact electromagnetic bandgap (HSF-UC-EBG) structure is investigated in this paper. It is demonstrated numerically and theoretically that the pole (located at phi = 180 degrees) of the reflection phase curve is related to the EBG location of the dispersion curve. More specifically, the pole is always located in the bandgap and the frequency shift characteristics of the pole and the EBG location are the same. Therefore, locations of the artificial magnetic conductor (AMC) and EBG can match with the AMC point and the pole, respectively. By realizing and making appropriate use of this, we can tailor the AMC and EBG locations to coincide in the frequency region only by reducing the spectral distance (d) between the AMC point and the pole. This method can improve the computational efficiency significantly. Parametric studies have been performed to obtain guidelines for reducing d. Finally, an example to design HSF-UC-EBG structure with simultaneous AMC and EBG properties by using this technique is presented with detail steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.