The flow behavior of CMn (Nb-Ti-V) micro alloyed steel was studied by hot compression tests in a wide range of temperatures (700 °C to 1050 °C, Step 50 °C), strain rates (0.000734 s-1 , 0.0029 s-1 , and 0.0146 s-1) and true strain of 0 to 0.8. Based on the experimental true stress-plastic strain data, the artificial neural network (ANN) methods were employed to predict the flow stress of CMn (Nb-Ti-V). The ANN model was trained with Levenberg-Marquardt (LM) algorithm. The optimal LM neural network model with two hidden layer network with ten neurons in the first and ten neurons in the second gives the best predictions is developed. It is demonstrated that the LV neural network model has better performance in predicting the flow stress. The results can be further used in mathematical simulation of hot metal forming processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.