Defense pathways and stress responses induced under Cd stress were illustrated in roots of hydroponically grown Medicago truncatula seedlings. Actually, the ascorbate-glutathione and antioxidative system, secondary metabolism events including peroxidases, phenolic compounds, and lignification launching, and developmental modifications were described. Cd (100 μM) initially increased reactive oxygen species, enhanced antioxidative (total SOD, CAT, and PRX) and ascorbate-glutathione-related metabolism enzymes (APX and MDAR), except in A17 and TN1.11. In agreement with peroxidase enhancement, physiological measurement and in situ observation illustrated soluble phenolic compound accumulation under Cd treatment. However, lignification was restricted to recently created protoxylem elements established in the root tip area, usually constituting the elongation zone. Cell death was increased. In the absence of necrotic reactions, developmental changes including lignin deposition, increase in cellulose and pectin contents, intercellular meatus, and condensed and deformed hairs were noticed in Cd-treated roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.