In this article, we give a comprehensive overview of recent methods in object detection using deep learning and their uses in augmented reality. The objective is to present a complete understanding of these algorithms and how augmented reality functions and services can be improved by integrating these methods. We discuss in detail the different characteristics of each approach and their influence on real-time detection performance. Experimental analyses are provided to compare the performance of each method and make meaningful conclusions for their use in augmented reality. Two-stage detectors generally provide better detection performance, while single-stage detectors are significantly more time efficient and more applicable to real-time object detection. Finally, we discuss several future directions to facilitate and stimulate future research on object detection in augmented reality. Keywords: object detection, deep learning, convolutional neural network, augmented reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.