An experimental and theoretical study of the shear behaviour of steel-fibre-reinforced concrete is presented. Twenty-seven direct shear push-off tests were carried out on high-strength concrete, with and without steel fibre reinforcement. The test series contained uncracked and precracked specimens for the study of the slipping response and the shear stress that can be transferred across an open crack. The test variables were the fibre content and the reinforcement ratio. The test results were compared with information provided by the available codes and other, previous results. The test results indicated that incorporation of steel fibres and bars in concrete members subjected to shear leads to an improved mechanical behaviour before failure. Based on the presented experimental results, an equation governing the direct shear strength is proposed and verified against test results from other test series.
To study the behaviour of shotcrete under dynamic load, a non-destructive laboratory experiment was set up with P-wave propagation along a concrete bar, with properties similar to rock. Cement-based mortar with properties that resemble shotcrete was applied to one end of the bar with a hammer impacting the other. The shape of the stress waves travelling towards the shotcrete was registered using accelerometers positioned along the bar. Finite-element modelling was used to verify the test results, which showed that the laboratory model with an impacting hammer could be used to initiate the same type of stress waves that result from blasting in good-quality rock. Previously recommended maximum allowed peak particle vibration velocities were verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.