PURPOSE The purpose of the study was to assess the influence of build orientations and density of support structures on the trueness of the 3D printed removable partial denture (RPD) frameworks. MATERIALS AND METHODS A maxillary Kennedy class III and mandibular class I casts were 3D scanned and used to design and produce two 3D virtual models of RPD frameworks. Using digital light processing (DLP) 3D printing, 47 RPD frameworks were fabricated at 3 different build orientations (100, 135 and 150-degree angles) and 2 support structure densities. All frameworks were scanned and 3D compared to the original virtual RPD models by metrology software to check 3D deviations quantitatively and qualitatively. The accuracy data were statistically analyzed using one-way ANOVA for build orientation comparison and independent sample t-test for structure density comparison at (α = .05). Points study analysis targeting RPD components and representative color maps were also studied. RESULTS The build orientation of 135-degree angle of the maxillary frameworks showed the lowest deviation at the clasp arms of tooth 26 of the 135-degree angle group. The mandibular frameworks with 150-degree angle build orientation showed the least deviation at the rest on tooth 44 and the arm of the I-bar clasp of tooth 45. No significant difference was seen between different support structure densities. CONCLUSION Build orientation had an influence on the accuracy of the frameworks, especially at a 135-degree angle of maxillary design and 150-degree of mandibular design. The difference in the support’s density structure revealed no considerable effect on the accuracy.
The optimal three-dimensional (3D) printing parameters of removable partial denture (RPD) frameworks should be studied to achieve the best accuracy, printing time, and least materials consumed. This study aimed to find the best build angle and support structures’ diameter of the 3D printed (RPD) framework. Sixty (RPD) frameworks (10 in each group) were manufactured by digital light processing (DLP) 3D printing technology at three build angles (110-D, 135-D, and 150-D) and two support structures diameters (thick, L, and thin, S). Six groups were named according to their printing setting as (110-DS, 135-DS, 150-DS, 110-DL, 135-DL, and 150-DL). Frameworks were 3D scanned and compared to the original cast surface using 3D metrology software (Geomagic Control X; 3D Systems, Rock Hill, SC). Both printing time and material consumption were also recorded. Data were tested for the significant difference by one-way analysis of variance (ANOVA) test at (α = 0.05). The correlations between outcome parameters were also calculated. The 110-DL group showed the least accuracy. Significantly, the printing time of the 150-D groups had the lowest time. Material consumption of group 110-DS presented the lowest significantly statistical value. Printing time had a linear correlation with both accuracy and material consumption. Within the study limitations, the 150-degree build angle and thin diameter support structures showed optimal accuracy and time-saving regardless of material consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.