Raman chemometric urinalysis (Rametrix™) was used to analyze 235 urine specimens from healthy individuals. The purpose of this study was to establish the “range of normal” for Raman spectra of urine specimens from healthy individuals. Ultimately, spectra falling outside of this range will be correlated with kidney and urinary tract disease. Rametrix™ analysis includes direct comparisons of Raman spectra but also principal component analysis (PCA), discriminant analysis of principal components (DAPC) models, multivariate statistics, and it is available through GitHub as the Rametrix™ LITE Toolbox for MATLAB®. Results showed consistently overlapping Raman spectra of urine specimens with significantly larger variances in Raman shifts, found by PCA, corresponding to urea, creatinine, and glucose concentrations. A 2-way ANOVA test found that age of the urine specimen donor was statistically significant (p < 0.001) and donor sex (female or male identification) was less so (p = 0.0526). With DAPC models and blind leave-one-out build/test routines using the Rametrix™ PRO Toolbox (also available through GitHub), an accuracy of 71% (sensitivity = 72%; specificity = 70%) was obtained when predicting whether a urine specimen from a healthy unknown individual was from a female or male donor. Finally, from female and male donors (n = 4) who contributed first morning void urine specimens each day for 30 days, the co-occurrence of menstruation was found statistically insignificant to Rametrix™ results (p = 0.695). In addition, Rametrix™ PRO was able to link urine specimens with the individual donor with an average of 78% accuracy. Taken together, this study established the range of Raman spectra that could be expected when obtaining urine specimens from healthy individuals and analyzed by Rametrix™ and provides the methodology for linking results with donor characteristics.
Raman Chemometric Urinalysis (Rametrix TM) was used to discern differences in Raman spectra from (i) 362 urine specimens from patients receiving peritoneal dialysis (PD) therapy for end-stage kidney disease (ESKD), (ii) 395 spent dialysate specimens from those PD therapies, and (iii) 235 urine specimens from healthy human volunteers. Rametrix TM analysis includes spectral processing (e.g., truncation, baselining, and vector normalization); principal component analysis (PCA); statistical analyses (ANOVA and pairwise comparisons); discriminant analysis of principal components (DAPC); and testing DAPC models using a leave-one-out build/test validation procedure. Results showed distinct and statistically significant differences between the three types of specimens mentioned above. Further, when introducing "unknown" specimens, Rametrix TM was able to identify the type of specimen (as PD patient urine or spent dialysate) with better than 98% accuracy, sensitivity, and specificity. Rametrix TM was able to identify "unknown" urine specimens as from PD patients or healthy human volunteers with better than 96% accuracy (with better than 97% sensitivity and 94% specificity). This demonstrates that an entire Raman spectrum of a urine or spent dialysate specimen can be used to determine its identity or the presence of ESKD by the donor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.