The most important piece of road infrastructure is bridges. Wooden bridges have advanced constantly during the past decades. The trend began in Scandinavian countries but has also now gained significant ground in Russia. This research studies experimental endurance potential of the joints of the wooden beam while considering the coefficient of asymmetry of the cycle, which corresponds to the actual operating conditions. Performance analysis of the composite bars is carried out based on the experiment; the development of a special methodology for calculating the joints of wooden elements with the dowel plates for their better endurance is also introduced in this paper. The results of experimental studies on the performance of bending composite wooden bridge bars based on dowel plates operating under cyclic influences thus determine the endurance limit of wood for composite wooden bridge beams based on dowel plates. The calculation technique and interdependence of the endurance coefficient affecting the asymmetry coefficient of the bent composite wooden bridge bars on the dowel plates under cyclic loading are considered. The experimental data on the endurance of composite wooden bridge beams have been obtained, and separate analysis has been made of the compounds under cyclic loading performance; a method has been developed for calculating the bent composite wooden bridge bars reinforced by the dowel plates under cyclic influences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.