The induction of strong cell-mediated immunity against targeted cancer cells is difficult, and often requires specific vaccination schema and the appropriate adjuvants to be effective. The chemokine RANTES has been studied as a vaccine adjuvant in cancer therapy, but specific applications remain to be determined. For gene-based vaccination against B16 melanoma in C57BL/6JNarl mice, initial priming with mouse RANTES cDNA followed 24 h later by human gp100 DNA vaccination, and later boosting with a viral vector expressing mRANTES and hgp100 strongly suppressed B16/hgp100 primary tumors and lung metastasis. The inclusion of mRANTES in this vaccination regimen gave significantly better suppression of tumor growth, substantially enhanced mouse survival, and led to greater cytotoxic activity of splenocytes against B16/hgp100 cells than vaccination against hgp100 alone. B16/hgp100 melanoma cells were resistant to the ligands TRAIL and FasL in vitro but sensitized to them in vivo owing to the priming effect of cytokines in response to vaccination. Our data demonstrate that co-vaccination with chemokine (mRANTES) and tumorspecific (hgp100) genes in a specific time sequence is more effective at suppressing tumor growth and metastasis than hgp100 alone, and this effect may be mediated by sensitization of tumor cells to death ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.